

COMUNE DI DIANO D'ALBA

Provincia di Cuneo - Regione Piemonte

PROGETTO DEFINITIVO-ESECUTIVO: RIQUALIFICAZIONE ENERGETICA DELL'IMPIANTO SPORTIVO DI FRAZIONE RICCA E MESSA IN SICUREZZA DELLE PERTINENZE DELLA SCUOLA DI FRAZIONE VALLE TALLORIA DEL COMUNE DI DIANO D'ALBA

N° Prog. **0015I**

Qualificazione energetica: situazione post intervento IMPIANTO SPORTIVO

COMMITTENTE:

Comune di DIANO D'ALBA Via Umberto I n°22, 12055 Diano D'Alba (CN) Sig. Sindaco EZIO CARDINALE

CANTIERI:

IMPIANTO SPORTIVO

Via Alba-Cortemilia n°150,12055 Diano D'Alba (CN) SCUOLA VALLE TALLORIA

Via Guido Cane, 12055 Diano D'Alba (CN)

Timbro e Firma (Giacosa Ing. Alberto)

TECNICO INCARICATO:

Giacosa Ing. Alberto Via Alba-Cortemilia n°102, 12055 Diano D'Alba (CN) Tell. 0173.61.27.74 info@progettaimpianti.com Ordine degli Ingegneri di Asti n° A 726

DATA:

Luglio 2019

ALLEGATO

3

Studio PROGETTAIMPIANTI di Giacosa Ing. Alberto Via Alba-Cortemilia n°102, 12055 Diano D'Alba (CN) info@progettaimpianti.com

Tell. 0173.61.27.74 Cell. 349.3923778

P.I. 03325080046 C.F. GCSLRT81R05A124P

ATTESTATO DI QUALIFICAZIONE ENERGETICA DEGLI EDIFICI

CODICE IDENTIFICATIVO:

VALIDO FINO AL:

DATI GENERALI

Destinazione d'uso	Oggetto dell'attestato	Nuova	a costruzione				
Residenziale	X Intero edificio	Passa	ggio di proprietà				
X Non residenziale	Unità immobiliare	Locazione					
	Gruppo di unità immobil	iari Ristrut	tturazione importante				
Classificazione D.P.R. 412/93: <i>E.4 (3)</i>	Numero di unità immobiliari	X Riqual	lificazione energetica				
	di cui è composto l'edificio: 1	Altro:					
Dati identificativi							
Regione : PI	EMONTE	Zona climatica :	E				
Comune : Dia	ano d'Alba	Anno di costruzione :	1990				
Indirizzo : Via	a Alba-Cortemilia nº150	Superficie utile riscaldata (m²	²): 215,40				
Piano: 1		Superficie utile raffrescata (m	0,00				
Interno :		Volume lordo riscaldato (m³)	908,07				
Coordinate GIS	5 : 44,652852 N - 8,048329 E	Volume lordo raffrescato (m³): 0,00				
Comune catastale D291	Sezion	ne Foglio 2	Particella 116				
Subalterni da a	da a	da a	da a				
Altri subalterni							

Servizi energetici presenti

Climatizzazione invernale

Climatizzazione estiva

Ventilazione meccanica

Prod. acqua calda sanitaria

Illuminazione

adla
4(0)
allo

Trasporto di persone o cose

DATI DI DETTAGLIO DEL FABBRICATO

CARATI	TERISTICHE COSTRUTTIV	/E		SUPERFICI E RAPF	PORTO DI FORMA	\
CARAT	TERISTICHE COSTRUTTIV	/ E		Superficie utile riscaldata	215,40	m²
COPERTURA	A dannia falda (aniana			Superficie utile raffrescata	0,00	m²
COPERIURA	A doppia falda (spiove	nte)		Superficie utile totale	215,40	m²
STRUTTURA	Mista	V – Volume riscaldato	908,07	m³		
SINUTIONA	Misto cemento armato	ratura	Volume raffrescato	0,00	m³	
INFISSI E FINESTRE				S - Superficie disperdente	771,40	m²
telaio	Alluminio	m²	14,30	Rapporto S/V	0,8495	
vetro	Doppio	m²	53,79	EP _{H,nd}	63,21	kWh/m² anno
ombreggiatura		m²	0,00	A _{sol,est} /A _{sup utile}	0,0631	-
				YIE	0,2138	W/m ² K

DATI ENERGETICI GENERALI

Energia primaria da fonti non rinnovabili	EPgl,nren	31,92	kWh/m² anno
Energia primaria da fonti rinnovabili	EPgl,ren	25,73	kWh/m² anno
Energia primaria totale	EPgl,tot	57,66	kWh/m² anno

Energia esportata	<u>2996,03</u> kWh/anno	Vettore energetico: Energia elettrica
-------------------	-------------------------	---------------------------------------

ATTESTATO DI QUALIFICAZIONE ENERGETICA DEGLI EDIFICI

CODICE IDENTIFICATIVO:

VALIDO FINO AL:

DATI DI DETTAGLIO DEGLI IMPIANTI

Servizio energetico	Tipo di impianto	Anno di installazione	Codice catasto regionale impianti termici	Vettore energetico utilizzato	Potenza Nominale kW	Efficienza media stagionale		EPren	EPnren
Climatizzazione invernale	Rendimenti noti mensili	2019		Energia elettrica da rete	18,00	188,5	ηн	10,27	23,25
Climatizzazione estiva									
Prod. acqua calda sanitaria	Rendimenti noti mensili	2019		Energia elettrica da rete	18,00	283,1	ηw	2,55	1,40
Impianti combinati									
Produzione da fonti rinnovabili	Impianto fotovoltaico	2019		Solare fotovoltaico	6,00	0,0		0,00	0,00
Ventilazione meccanica									
Illuminazione	Lampade a led	2019		Energia elettrica da rete	0,87	0,0		12,91	7,27
Trasporto di persone o cose									_

SOFTWARE UTILIZZATO

Denominazione	EC700 - versione 9
Produttore	Edilclima S.r.l.
Dichiarazione di rispondenza e garanzia di scostamento massimo dei risultati conseguiti.	Certificato di garanzia di conformità n. 73 alle UNI/TS 11300-1:2014, UNI/TS 11300-2:2014, UNI/TS 11300-2:2014, UNI/TS 11300-3:2016, UNI/TS 11300-5:2016, UNI/TS 11300-6:2016 e alla UNI EN 15193:2008, rilasciato dal C.T.I. (Comitato Termotecnico Italiano) il 15 marzo 2017.

NOTE

ATTESTATO DI QUALIFICAZIONE ENERGETICA DEGLI EDIFICI

CODICE IDENTIFICATIVO: VALIDO FINO AL:

SOGGETTO COMPILATORE

Nome e Cognome / Denominazione	Alberto Giacosa
Indirizzo	Via Alba-Cortemilia 102 - 12055 - Diano D'Alba (Cuneo)
E-mail	info@progettaimpianti.com
Telefono	3493923778 0173/612774
Titolo	Ing.
Ordine/iscrizione	Ingegneri di Asti / A726
Informazioni aggiuntive	

Il presente attestato è reso, dal sottoscritto, in forma di dichiarazione sostitutiva di atto notorio ai sensi dell'articolo 47 del D.P.R. 445/2000 e dell'articolo 15, comma 1 del D.Lgs 192/2005 così come modificato dall'articolo 12 del D.L 63/2013.

Data di emissione 07/2019 Firma e timbro del tecnico o firma digitale

Relazione tecnica di calcolo prestazione energetica del sistema edificio-impianto

EDIFICIO IMPIANTO SPORTIVO FRAZIONE RICCA

INDIRIZZO Via Alba-Cortemilia n°150

COMMITTENTE Comune di Diano d'Alba

INDIRIZZO Via Umberto I n°22, 12055 Diano d'Alba (CN)

COMUNE Diano d'Alba

Software di calcolo EDILCLIMA - EC700 versione 9.19.25

Ing. Giacosa Alberto
Via Alba-Cortemilia n.102, 12055 Diano D'Alba (CN)

DATI PROGETTO ED IMPOSTAZIONI DI CALCOLO

Dati generali

Destinazione d'uso prevalente (DPR 412/93) E.4 (3) Edifici adibiti ad attività ricreative: quali bar,

ristoranti, sale da ballo.

Edificio pubblico o ad uso pubblico Si
Edificio situato in un centro storico No

Tipologia di calcolo Calcolo regolamentare (valutazione A1/A2)

Opzioni lavoro

Ponti termici Calcolo analitico

Resistenze liminari Appendice A UNI EN ISO 6946

Serre / locali non climatizzati

Capacità termica

Calcolo semplificato

Calcolo semplificato

Calcolo automatico

Radiazione solare Calcolo con angolo di Azimut

Opzioni di calcolo

Regime normativo UNI/TS 11300-4 e 5:2016

Rendimento globale medio stagionale FAQ ministeriali (agosto 2016)

Verifica di condensa interstiziale UNI EN ISO 13788

DATI CLIMATICI DELLA LOCALITÀ

Caratteristiche geografiche

Località Diano d'Alba

Provincia *Cuneo*

Altitudine s.l.m. 496 m

Latitudine nord 44° 39′ Longitudine est 8° 1′ Gradi giorno DPR 412/93 2930

Zona climatica **E**

Località di riferimento

per dati invernali Asti per dati estivi Asti

Stazioni di rilevazione

per la temperatura Asti
per l'irradiazione Asti
per il vento Asti

Caratteristiche del vento

Regione di vento:

Direzione prevalente Sud-Ovest

Distanza dal mare > 40 km
Velocità media del vento 1,3 m/s
Velocità massima del vento 2,6 m/s

Dati invernali

Temperatura esterna di progetto -10,1 °C

Stagione di riscaldamento convenzionale dal **15 ottobre** al **15 aprile**

Dati estivi

Temperatura esterna bulbo asciutto

Temperatura esterna bulbo umido

Umidità relativa

Escursione termica giornaliera

30,1 °C

23,2 °C

56,3 %

11 °C

Temperature esterne medie mensili

Descrizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Temperatura	°C	-2.3	2.0	7.7	11.2	16,6	20,9	21.8	20,0	17.3	10.4	5,2	-0,3

Irradiazione solare media mensile

Esposizione	u.m.	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Nord	MJ/m ²	1,6	2,5	3,8	5,4	8,1	9,7	9,9	6,9	4,5	2,9	1,5	1,3
Nord-Est	MJ/m²	1,8	3,5	5,7	8,5	11,3	12,7	13,6	10,3	7,2	4,1	1,7	1,4
Est	MJ/m ²	3,9	7,9	9,4	12,1	14,0	14,9	16,4	13,7	11,0	7,6	3,1	3,2
Sud-Est	MJ/m ²	6,9	12,3	11,8	12,8	13,0	12,9	14,5	13,5	12,7	10,6	4,8	5,9
Sud	MJ/m²	8,8	15,0	12,4	11,4	10,5	10,1	11,3	11,5	12,3	12,1	5,9	7,6
Sud-Ovest	MJ/m²	6,9	12,3	11,8	12,8	13,0	12,9	14,5	13,5	12,7	10,6	4,8	5,9
Ovest	MJ/m ²	3,9	7,9	9,4	12,1	14,0	14,9	16,4	13,7	11,0	7,6	3,1	3,2
Nord-Ovest	MJ/m ²	1,8	3,5	5,7	8,5	11,3	12,7	13,6	10,3	7,2	4,1	1,7	1,4
Orizz. Diffusa	MJ/m²	2,3	3,0	5,0	6,3	8,1	8,8	8,8	7,6	5,8	3,9	2,2	1,8
Orizz. Diretta	MJ/m²	2,5	6,7	7,8	11,2	13,2	14,3	16,4	12,7	9,6	6,1	1,8	2,0

Irradianza sul piano orizzontale nel mese di massima insolazione: 292 W/m²

ELENCO COMPONENTI

<u>Muri:</u>

Cod	Tipo	Descrizione	Sp [mm]	Ms [kg/m²]	Y _{IE} [W/m²K]	Sfasamento [h]	Ст [kJ/m²K]	ε [-]	a [-]	[°C]	Ue [W/m²K]
M1	Т	Muro verso esterno in laterizio cassavuota 40	400,0	247	0,144	-10,668	60,289	0,90	0,60	-10,1	0,527
M2	T	Muro verso esterno in laterizio e cls 50	500,0	834	0,133	-13,401	55,483	0,90	0,60	-10,1	1,241
M3	T	Telaio vetrate serramenti 5	50,0	74	1,744	-1,255	19,739	0,90	0,60	-10,1	1,786
M4	T	Pilastro veranda 30 + COIBENTAZIONE	425,0	114	0,112	-6,077	14,734	0,90	0,60	-10,1	0,324

Pavimenti:

Cod	Tipo	Descrizione		Ms [kg/m²]	Y _{IE} [W/m²K]	Sfasamento [h]	C _T [kJ/m²K]	ε [-]	a [-]	θ [°C]	Ue [W/m²K]
P1	G	Pavimento verso terreno in cls 40	400,0	931	0,463	-10,257	67,928	0,90	0,60	-10,1	0,420

Soffitti:

Cod	Tipo	Descrizione	Sp [mm]	Ms [kg/m²]	Y _{IE} [W/m²K]	Sfasamento [h]	C _T [kJ/m²K]	ε [-]	a [-]	θ [°C]	Ue [W/m²K]
<i>S</i> 1	U	Soletta sottotetto in latero-cls 25 + COIBENTAZIONE	450,0	346	0,023	-9,773	61,507	0,90	0,60	-7,1	0,160
<i>S2</i>	Т	Copertura veranda 4 + CONTROSOFFITTO ISOLATO	232,5	24	0,124	-3,632	12,685	0,90	0,60	-10,1	0,153

Legenda simboli

Sp Spessore struttura

 $\begin{array}{ll} \text{Ms} & \text{Massa superficiale della struttura senza intonaci} \\ \text{Y}_{\text{IE}} & \text{Trasmittanza termica periodica della struttura} \end{array}$

 $\begin{array}{ll} \text{Sfasamento} & \text{Sfasamento dell'onda termica} \\ \text{C_T} & \text{Capacit\`{a} termica areica} \\ \end{array}$

ε Emissività

a Fattore di assorbimento

Temperatura esterna o temperatura locale adiacente

Ue Trasmittanza di energia della struttura

Ponti termici:

Cod	Descrizione	Assenza di rischio formazione muffe	Ψ [W/mK]
<i>Z</i> 1	C - Angolo tra pareti		-0,568
<i>Z</i> 2	R - Parete - Copertura		-0,052
<i>Z3</i>	GF - Parete - Solaio controterra	X	-0,766

Legenda simboli

Ψ Trasmittanza lineica di calcolo

Componenti finestrati:

Cod	Tipo	Descrizione	vetro	ε	ggl,n	fc inv	fc est	H [cm]	L [cm]	Ug [W/m²K]	Uw [W/m²K]	θ [°C]	Agf [m²]	Lgf [m]
W1	Т	Allvd 12mm 100x227	Doppio	0,837	0,479	0,65	0,65	200,0	100,0	1,787	1,796	-10,1	0,740	5,160
W2	Т	Allvd 12mm 106x106	Doppio	0,837	0,479	0,65	0,65	106,0	106,0	1,787	1,790	-10,1	0,846	3,680
W3	Т	Allvd 12mm 200x137	Doppio	0,837	0,479	0,65	0,65	170,0	200,0	1,787	1,791	-10,1	2,414	18,400
W4	Т	Allvd 12mm 190x165	Doppio	0,837	0,479	0,65	0,65	165,0	190,0	1,787	1,789	-10,1	2,552	9,420
W5	Т	Allvd 12mm 183x255	Doppio	0,837	0,479	0,65	0,65	255,0	183,0	1,787	1,789	-10,1	3,742	15,720
W6	T	Allvd TT 15mm 500x246 - veranda	Doppio	0,837	0,230	0,35	0,35	246,0	500,0	1,000	1,300	-10,1	10,580	27,600
<i>W7</i>	Т	Allvd TT 15mm 514x246 - veranda	Doppio	0,837	0,230	0,35	0,35	246,0	514,0	1,000	1,300	-10,1	10,902	27,880
W8	Т	Allvd TT 15mm 514x60 - veranda	Doppio	0,837	0,230	0,35	0,35	60,0	514,0	1,000	1,300	-10,1	2,191	10,840
W9	T	Allvd 12mm 60x80	Doppio	0,837	0,479	0,65	0,65	80,0	60,0	1,787	1,792	-10,1	0,304	2,240
W10	T	Allvd 12mm 60x120	Doppio	0,837	0,479	0,65	0,65	120,0	60,0	1,787	1,791	-10,1	0,488	3,040
W11	Т	Allvd 12mm 130x165	Doppio	0,837	0,479	0,65	0,65	165,0	130,0	1,787	1,790	-10,1	1,646	8,220
W12	T	Allvd 12mm 78x165	Doppio	0,837	0,479	0,65	0,65	165,0	78,0	1,787	1,790	-10,1	0,966	4,300
W13	T	Allvd 12mm 78x84	Doppio	0,837	0,479	0,65	0,65	84,0	78,0	1,787	1,791	-10,1	0,448	2,680
W14	T	Allvd 12mm 97x147	Doppio	0,837	0,479	0,65	0,65	147,0	97,0	1,787	1,791	-10,1	1,011	6,840

Legenda simboli

ε Emissività

ggl,n Fattore di trasmittanza solare

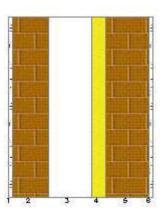
fc inv Fattore tendaggi (energia invernale) fc est Fattore tendaggi (energia estiva)

H Altezza L Larghezza

Ug Trasmittanza vetro

Ing. Giacosa Alberto Via Alba-Cortemilia n.102, 12055 Diano D'Alba (CN)

Uw Trasmittanza serramento


 θ Temperatura esterna o temperatura locale adiacente

Agf Area del vetro

Lgf Perimetro del vetro

<u>Descrizione della struttura:</u> Muro verso esterno in laterizio cassavuota 40 <u>Codice:</u> M1

Trasmittanza termica	0,527	W/m ² K
Spessore	400	mm
Temperatura esterna (calcolo potenza invernale)	-10,1	°C
Permeanza	111,73 2	10 ⁻¹² kg/sm ² Pa
Massa superficiale (con intonaci)	279	kg/m²
Massa superficiale (senza intonaci)	247	kg/m²
Trasmittanza periodica	0,144	W/m ² K
Fattore attenuazione	0,273	-
Sfasamento onda termica	-10,7	h

Stratigrafia:

N.	Descrizione strato	S	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130		-	-
1	Intonaco di calce e sabbia	10,00	0,800	0,013	1600	1,00	10
2	Muratura in laterizio pareti interne (um. 0.5%)	100,00	0,430	0,233	1200	1,00	7
3	Intercapedine non ventilata Av<500 mm²/m	120,00	0,667	0,180	-	-	-
4	Pannello in lana di roccia a doppia densità	40,00	0,040	1,000	165	1,03	1
5	Muratura in laterizio pareti esterne (um. 1.5%)	120,00	0,470	0,255	1000	1,00	7
6	Intonaco di calce e sabbia	10,00	0,800	0,013	1600	1,00	10
-	Resistenza superficiale esterna	_	_	0,074	_	_	_

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura:</u> *Muro verso esterno in laterizio e cls 50*

41 W/m ² K
7,

Spessore 500 mm

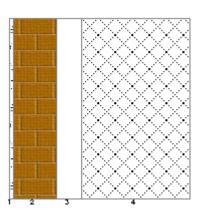
Temperatura esterna

-10,1 °C

(calcolo potenza invernale)

Permeanza

5,006


10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 850 kg/m 2

Massa superficiale (senza intonaci) **834** kg/m²

Trasmittanza periodica **0,133** W/m²K

Fattore attenuazione **0,107** - Sfasamento onda termica **-13,4** h

Codice: M2

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-		0,130	-		
1	Intonaco di calce e sabbia	10,00	0,800	0,013	1600	1,00	10
2	Muratura in laterizio pareti interne (um. 0.5%)	120,00	0,430	0,279	1200	1,00	7
3	Intercapedine non ventilata Av<500 mm²/m	70,00	0,389	0,180	-	-	-
4	C.I.s. armato (1% acciaio)	300,00	2,300	0,130	2300	1,00	130
-	Resistenza superficiale esterna	-	-	0,074	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m^2K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura:</u> Telaio vetrate serramenti 5

Trasmittanza termica **1,786** W/m²K

Spessore 50 mm

Temperatura esterna (calcolo potenza invernale) -10,1 °C

Permeanza **0,001** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 74 kg/m^2

Massa superficiale (senza intonaci) 74 kg/m²

Trasmittanza periodica **1,744** W/m²K

Fattore attenuazione **0,976** - Sfasamento onda termica **-1,3** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130	-	-	-
1	Alluminio	5,00	220,000	0,000	2700	0,88	9999999
2	Intercapedine non ventilata Av<500 mm²/m	4,00	0,045	0,088	-	-	-
3	Acciaio	3,00	52,000	0,000	7800	0,45	9999999
4	Intercapedine non ventilata Av<500 mm²/m	26,00	0,144	0,180	-	-	-
5	Acciaio	3,00	52,000	0,000	7800	0,45	9999999
6	Intercapedine non ventilata Av<500 mm²/m	4,00	0,045	0,088	-	-	-
7	Alluminio	5,00	220,000	0,000	2700	0,88	9999999
-	Resistenza superficiale esterna	-	-	0,074	-	-	-

Legenda simboli

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

Codice: M3

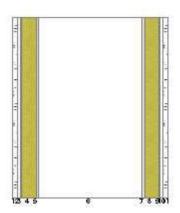
<u>Descrizione della struttura:</u> Pilastro veranda 30 + COIBENTAZIONE

Trasmittanza termica **0,324** W/m²K

Spessore 425 mm

Temperatura esterna (calcolo potenza invernale) -10,1 °C

Permeanza **0,001** 10⁻¹²kg/sm²Pa


Massa superficiale (sen interest) 135 kg/m²

(con intonaci)

Massa superficiale (senza intonaci) 114 kg/m²

Trasmittanza periodica **0,112** W/m²K

Fattore attenuazione **0,347** - Sfasamento onda termica **-6,1** h

Codice: M4

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,130		-	-
1	Cartongesso 12,5 mm (per THERMOGES)	12,50	0,211	0,059	840	0,84	8
2	Intercapedine non ventilata Av<500 mm²/m	9,00	0,063	0,143	-	-	-
3	Barriera vapore in fogli di P.V.C.	1,00	0,160	0,006	1390	0,90	50000
4	Lana di vetro MUPAN K 4+	40,00	0,035	1,143	20	1,03	3
5	Acciaio	7,00	52,000	0,000	7800	0,45	9999999
6	Intercapedine non ventilata Av<500 mm²/m	286,00	1,589	0,180	-	-	_
7	Acciaio	7,00	52,000	0,000	7800	0,45	9999999
8	Lana di vetro MUPAN K 4+	40,00	0,035	1,143	20	1,03	3
9	Barriera vapore in fogli di P.V.C.	1,00	0,160	0,006	1390	0,90	50000
10	Intercapedine non ventilata Av<500 mm²/m	9,00	0,063	0,143	-	-	_
11	Cartongesso 12,5 mm (per THERMOGES)	12,50	0,211	0,059	840	0,84	8
-	Resistenza superficiale esterna	_	-	0,074	-	-	-

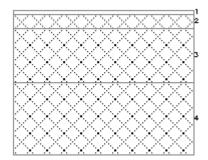
S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura:</u> Pavimento verso terreno in cls 40

Trasmittanza termica **2,439** W/m²K
Trasmittanza controterra **0,420** W/m²K

Spessore 400 mm

Temperatura esterna (calcolo potenza invernale) -10,1 °C


Permeanza **0,002** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 931 kg/m²

Massa superficiale (senza intonaci) 931 kg/m²

Trasmittanza periodica **0,463** W/m²K

Fattore attenuazione 1,103 Sfasamento onda termica -10,3 h

Codice: P1

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale interna	-	-	0,170		-	-
1	Piastrelle in ceramica (piastrelle)	10,00	1,300	0,008	2300	0,84	9999999
2	Massetto ripartitore in calcestruzzo con rete	40,00	1,490	0,027	2200	0,88	70
3	C.l.s. di sabbia e ghiaia (pareti interne)	150,00	1,910	0,079	2400	1,00	96
4	C.I.s. armato (1% acciaio)	200,00	2,300	0,087	2300	1,00	130
-	Resistenza superficiale esterna	-	-	0,040	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

CALCOLO DELLA TRASMITTANZA CONTROTERRA secondo UNI EN ISO 13370

Pavimento appoggiato su terreno:

Pavimento verso terreno in cls 40

Area del pavimento 252,12 m²
Perimetro disperdente del pavimento 76,50 m

Spessore pareti perimetrali esterne 420 mm

Conduttività termica del terreno 1,50 W/mK

Codice: P1

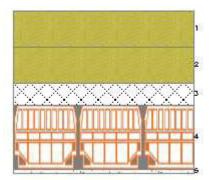
<u>Descrizione della struttura:</u> Soletta sottotetto in latero-cls 25 + COIBENTAZIONE

Codice: 51

Trasmittanza termica	0,160	W/m²K

Spessore	450	mm
Tomporatura octorna		

Temperatura esterna (calcolo potenza invernale) -7,1 °C


Permeanza **25,907** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 362 kg/m²

Massa superficiale (senza intonaci) 346 kg/m²

Trasmittanza periodica **0,023** W/m²K

Fattore attenuazione **0,140** - Sfasamento onda termica **-9,8** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	1	0,100	1		-
1	Lana di vetro MUPAN K 4+	100,00	0,035	2,857	20	1,03	3
2	Lana di vetro MUPAN K 4+	100,00	0,035	2,857	20	1,03	3
3	C.I.s. di sabbia e ghiaia (pareti interne)	60,00	1,910	0,031	2400	1,00	96
4	Soletta in laterizio spess. 18-20 - Inter. 50	180,00	0,660	0,273	1100	0,84	7
5	Intonaco di calce e sabbia	10,00	0,800	0,013	1600	1,00	10
-	Resistenza superficiale interna	-	1	0,100	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m ² K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R.V.	Fattore di resistenza alla diffusione del vapore in capo asciutto	-

<u>Descrizione della struttura:</u> Copertura veranda 4 + CONTROSOFFITTO ISOLATO

Codice: 52

Trasmittanza termica **0,153** W/m²K

Spessore 233 mm

Temperatura esterna (calcolo potenza invernale) -10,1 °C

Permeanza **0,007** 10⁻¹²kg/sm²Pa

Massa superficiale (con intonaci) 35 kg/m²

Massa superficiale 24 kg/m²

riassa superriciale (senza intonaci) 24 kg/m²

Trasmittanza periodica **0,124** W/m²K

Fattore attenuazione **0,812** - Sfasamento onda termica **-3,6** h

Stratigrafia:

N.	Descrizione strato	s	Cond.	R	M.V.	C.T.	R.V.
-	Resistenza superficiale esterna	-	-	0,074	-	-	-
1	Acciaio	1,00	52,000	0,000	7800	0,45	9999999
2	Poliuretano espanso in fabbrica fra lamiere sigillate	38,00	0,024	1,583	30	1,30	140
3	Acciaio	1,00	52,000	0,000	7800	0,45	9999999
4	Intercapedine non ventilata Av<500 mm²/m	18,00	0,113	0,160	-	-	-
5	Barriera vapore foglio di alluminio (.02505 mm)	1,00	220,000	0,000	2700	0,88	9999999
6	Lana di vetro MUPAN K 4+	80,00	0,035	2,286	20	1,03	3
7	Lana di vetro MUPAN K 4+	80,00	0,035	2,286	20	1,03	3
8	Barriera vapore in fogli di P.V.C.	1,00	0,160	0,006	1390	0,90	50000
9	Cartongesso 12,5 mm (per THERMOGES)	12,50	0,211	0,059	840	0,84	8
-	Resistenza superficiale interna	-	-	0,100	-	-	-

S	Spessore	mm
Cond.	Conduttività termica, comprensiva di eventuali coefficienti correttivi	W/mK
R	Resistenza termica	m²K/W
M.V.	Massa volumica	kg/m³
C.T.	Capacità termica specifica	kJ/kgK
R V	Fattore di resistenza alla diffusione del vanore in cano asciutto	_

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Allvd 12mm 100x227

Codice: W1

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Classe 1 secondo Norma

UNI EN 12207

Trasmittanza termica U_w **1,796** W/m²K Trasmittanza solo vetro U_q **1,787** W/m²K

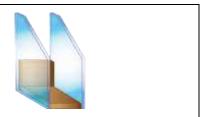
Dati per il calcolo degli apporti solari

Emissività ϵ 0,837 - Fattore tendaggi (invernale) $f_{c \text{ inv}}$ 0,65 - Fattore tendaggi (estivo) $f_{c \text{ est}}$ 0,65 - Fattore di trasmittanza solare $g_{gl,n}$ 0,750 -

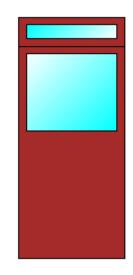
Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W f shut 0,6 -

Dimensioni del serramento


Larghezza 100,0 cm Altezza 200,0 cm Altezza sopraluce 27,0 cm

Caratteristiche del telaio


Trasmittanza termica del telaio	U_f	1,80	W/m^2K
K distanziale	K_{d}	0,00	W/mK
Area totale	A_{w}	2,270	m^2
Area vetro	\mathbf{A}_{g}	0,740	m^2
Area telaio	A_f	1,530	m^2
Fattore di forma	F_f	0 ,33	-
Perimetro vetro	L_g	<i>5,160</i>	m
Perimetro telaio	L_f	6,540	m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	•	0,130
Primo vetro	4,0	0,20	0,020
Intercapedine	-	-	0,316
Secondo vetro	4,0	0,20	0,020
Resistenza superficiale esterna	-	-	0,074

S	Spessore	mm
λ	Conduttività termica	W/mK
R	Resistenza termica	m^2K/W

Caratteristiche del modulo

Trasmittanza termica del modulo U **1,796** W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Allvd 12mm 106x106

Codice: W2

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Classe 1 secondo Norma

UNI EN 12207

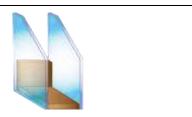
Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,750} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W f shut 0,6 -

Dimensioni del serramento


Larghezza **106,0** cm Altezza **106,0** cm

Trasmittanza termica del telaio	U_f	1,80	W/m^2K
K distanziale	K_d	0,00	W/mK
Area totale	A_w	1,124	m^2
Area vetro	\mathbf{A}_{g}	0,846	m^2
Area telaio	A_f	0,277	m^2
Fattore di forma	F_f	0,75	-
Perimetro vetro	L_g	3,680	m
Perimetro telaio	L_f	4,240	m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	4,0	0,20	0,020
Intercapedine	-	•	0,316
Secondo vetro	4,0	0,20	0,020
Resistenza superficiale esterna	-	•	0,074

S	Spessore	mm
λ	Conduttività termica	W/mK
R	Resistenza termica	m ² K/W

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,790 W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Allvd 12mm 200x137

Codice: W3

Tipologia di serramento Singolo

Classe di permeabilità Classe 1 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari

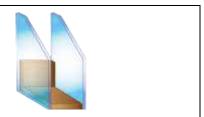
Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,750} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m 2 K/W f shut 0,6 -

Dimensioni del serramento

 Larghezza
 200,0 cm


 Altezza
 170,0 cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	1,80	W/m ² K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	3,400	m^2
Area vetro	\mathbf{A}_{g}	2,414	m^2
Area telaio	A_f	0,986	m^2
Fattore di forma	F_f	0,71	-
Perimetro vetro	L_g	18,400	m
Perimetro telaio	L_f	7,400	m

Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	•	0,130
Primo vetro	4,0	0,20	0,020
Intercapedine	-	-	0,316
Secondo vetro	4,0	0,20	0,020
Resistenza superficiale esterna	-	-	0,074

<u>Legenda simboli</u>

S	Spessore	mm
λ	Conduttività termica	W/mK
R	Resistenza termica	m ² K/W

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,791 W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Allvd 12mm 190x165

Codice: W4

Tipologia di serramento Singolo

Classe 1 secondo Norma Classe di permeabilità

UNI EN 12207

Trasmittanza termica U_w **1,789** W/m²K Trasmittanza solo vetro U_g **1,787** W/m²K

Dati per il calcolo degli apporti solari

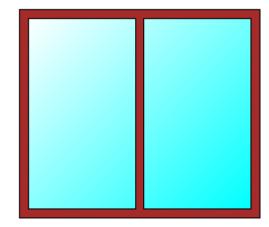
Emissività ε 0,837 Fattore tendaggi (invernale) $f_{c\;inv}$ 0,65 Fattore tendaggi (estivo) $f_{c est}$ 0,65 Fattore di trasmittanza solare **0,750** $g_{gl,n}$

Resistenza termica chiusure **0,00** m²K/W f shut 0,6

Dimensioni del serramento

Larghezza **190,0** cm Altezza **165,0** cm

Caratteristiche del telaio


Trasmittanza termica del telaio	U_f	1,80	W/m^2K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	3,135	m^2
Area vetro	A_g	2,552	m^2
Area telaio	A_f	<i>0,583</i>	m^2
Fattore di forma	F_f	0,81	-
Perimetro vetro	L_g	9,420	m
Perimetro telaio	L_f	7,100	m

Stratigrafia del pacchetto vetrato

Descrizione strato	s	λ	R
Resistenza superficiale interna	-	•	0,130
Primo vetro	4,0	0,20	0,020
Intercapedine	-	-	0,316
Secondo vetro	4,0	0,20	0,020
Resistenza superficiale esterna	-	-	0,074

S	Spessore	mm
λ	Conduttività termica	W/mK
R	Resistenza termica	m^2K/W

Caratteristiche del modulo

Trasmittanza termica del modulo U **1,789** W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Allvd 12mm 183x255

Codice: W5

Tipologia di serramento Singolo

Classe di permeabilità Classe 1 secondo Norma

UNI EN 12207

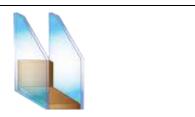
Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,750} \hspace{0.2cm} -$

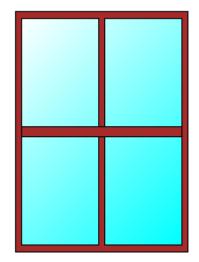
Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W f shut 0,6 -

Dimensioni del serramento


Larghezza **183,0** cm Altezza **255,0** cm

Trasmittanza termica del telaio	U_f	1,80	W/m^2K
K distanziale	K_d	0,00	W/mK
Area totale	A_w	4,667	m^2
Area vetro	\mathbf{A}_{g}	3,742	m^2
Area telaio	A_f	0,924	m^2
Fattore di forma	F_f	0,80	-
Perimetro vetro	L_{g}	<i>15,720</i>	m
Perimetro telaio	L_f	8,760	m


Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	•	0,130
Primo vetro	4,0	0,20	0,020
Intercapedine	-	•	0,316
Secondo vetro	4,0	0,20	0,020
Resistenza superficiale esterna	-	•	0,074

Legenda simboli

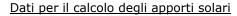
s Spessore mm $\lambda \quad \text{Conduttivit\`a termica} \qquad W/mK \\ R \quad \text{Resistenza termica} \qquad m^2 K/W$

Caratteristiche del modulo

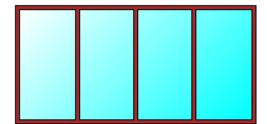
Trasmittanza termica del modulo U **1,789** W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Allvd TT 15mm 500x246 - veranda


Codice: W6

Tipologia di serramento


Classe 4 secondo Norma Classe di permeabilità

UNI EN 12207

Trasmittanza termica **1,300** W/m²K U_w Trasmittanza solo vetro **1,000** W/m²K U_g

Emissività	3	0,837	-	
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,35	-	
Fattore tendaggi (estivo)	$f_{c\ est}$	0,35	-	
Fattore di trasmittanza solare	$g_{gl,n}$	0,670	-	

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure	0,00	m ² K/W
fshut	0.6	_

Dimensioni del serramento

Larghezza	<i>500,0</i>	cm
Altezza	246,0	cm

Caratteristiche del telaio

K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	12,300	m^2
Area vetro	A_g	10,580	m^2
Area telaio	A_f	1,720	m^2
Fattore di forma	F_f	0,86	-
Perimetro vetro	L_g	27,600	m
Perimetro telaio	L_f	14,920	m

Caratteristiche del modulo

Trasmittanza termica del modulo U **1,300** W/m²K

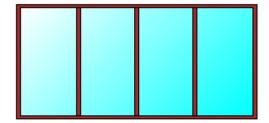
CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Allvd TT 15mm 514x246 - veranda

Codice: W7

<u>Caratteristicl</u>	<u>ne del</u>	<u>serramento</u>
-----------------------	---------------	-------------------

Tipologia di serramento


Classe 4 secondo Norma Classe di permeabilità

UNI EN 12207

Trasmittanza termica **1,300** W/m²K U_w Trasmittanza solo vetro **1,000** W/m²K U_g

Dati per il calcolo degli apporti solari

Emissività	3	0,837	-
Fattore tendaggi (invernale)	$f_{c\ inv}$	0,35	-
Fattore tendaggi (estivo)	$f_{c\ est}$	0,35	-
Fattore di trasmittanza solare	$g_{gl,n}$	0,670	-

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure	0,00	m ² K/W
f shut	0,6	_

Dimensioni del serramento

Larghezza	<i>514,0</i>	cm
Altezza	246,0	cm

Caratteristiche del telaio

K distanziale	K_d	0,00	W/mK
Area totale	A_w	12,644	m^2
Area vetro	A_g	10,902	m^2
Area telaio	A_f	1,742	m^2
Fattore di forma	F_f	0,86	-
Perimetro vetro	L_g	27,880	m
Perimetro telaio	L_f	15,200	m

Caratteristiche del modulo

Trasmittanza termica del modulo U **1,300** W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Allvd TT 15mm 514x60 - veranda

Codice: W8

Tipologia di serramento -

Classe di permeabilità Classe 1 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{0,35} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{0,35} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,670} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W f shut 0,6 -

Dimensioni del serramento

Larghezza 514,0 cm Altezza 60,0 cm

Caratteristiche del telaio

K distanziale	K_d	0,00	W/mK
Area totale	A_w	3,084	m^2
Area vetro	A_g	2,191	m^2
Area telaio	A_f	0,893	m^2
Fattore di forma	F_f	0,71	-
Perimetro vetro	L_g	10,840	m
Perimetro telaio	L_f	11,480	m

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,300 W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Allvd 12mm 60x80

Codice: W9

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Classe 1 secondo Norma

UNI EN 12207

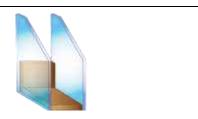
Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,750} \hspace{0.2cm} -$

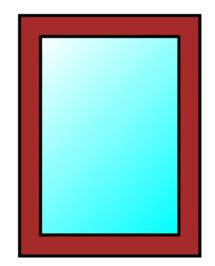
Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W f shut 0,6 -

Dimensioni del serramento


Larghezza **60,0** cm Altezza **80,0** cm

Trasmittanza termica del telaio	U_f	1,80	W/m ² K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	0,480	m^2
Area vetro	A_g	0,304	m^2
Area telaio	A_f	0,176	m^2
Fattore di forma	F_f	0 ,63	-
Perimetro vetro	L_g	2,240	m
Perimetro telaio	L_f	2,800	m


Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	4,0	0,20	0,020
Intercapedine	-	•	0,316
Secondo vetro	4,0	0,20	0,020
Resistenza superficiale esterna	-	•	0,074

Legenda simboli

s Spessore mm $\lambda \quad \text{Conduttivit\`a termica} \qquad W/mK \\ R \quad \text{Resistenza termica} \qquad m^2 K/W$

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,792 W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Allvd 12mm 60x120

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Classe 1 secondo Norma

UNI EN 12207

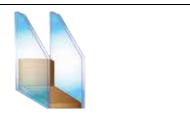
Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,750} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

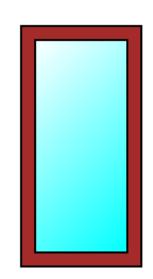
Resistenza termica chiusure 0,00 m²K/W f shut 0,6 -

Dimensioni del serramento


Larghezza **60,0** cm Altezza **120,0** cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	1,80	W/m ² K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	0,720	m^2
Area vetro	A_{g}	0,488	m^2
Area telaio	A_f	0,232	m^2
Fattore di forma	F_f	0,68	-
Perimetro vetro	L_g	3,040	m
Perimetro telaio	L_f	3,600	m


Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	4,0	0,20	0,020
Intercapedine	-	-	0,316
Secondo vetro	4,0	0,20	0,020
Resistenza superficiale esterna	-	_	0,074

Legenda simboli

s Spessore mm $\lambda \quad \text{Conduttivit\`a termica} \qquad W/mK \\ R \quad \text{Resistenza termica} \qquad m^2 K/W$

Codice: W10

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,791 W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Allvd 12mm 130x165

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Classe 1 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,750} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

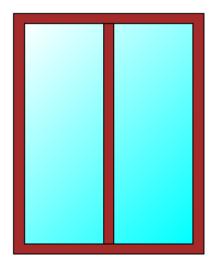
Resistenza termica chiusure 0,00 m²K/W f shut 0,6 -

Dimensioni del serramento

Larghezza **130,0** cm Altezza **165,0** cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	1,80	W/m ² K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	2,145	m^2
Area vetro	\mathbf{A}_{g}	1,646	m^2
Area telaio	A_f	0,499	m^2
Fattore di forma	F_f	0,77	-
Perimetro vetro	L_g	8,220	m
Perimetro telaio	L_f	5,900	m


Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	4,0	0,20	0,020
Intercapedine	-	•	0,316
Secondo vetro	4,0	0,20	0,020
Resistenza superficiale esterna	-	•	0,074

Legenda simboli

s Spessore mm $\lambda \quad \text{Conduttivit\`a termica} \qquad W/mK \\ R \quad \text{Resistenza termica} \qquad m^2 K/W$

Codice: W11

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,790 W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Allvd 12mm 78x165

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Classe 1 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,750} \hspace{0.2cm} -$

Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W f shut 0,6 -

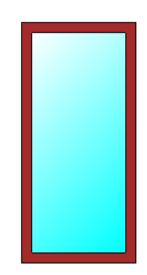
Dimensioni del serramento

 Larghezza
 78,0 cm

 Altezza
 165,0 cm

Caratteristiche del telaio

Trasmittanza termica del telaio	U_f	1,80	W/m ² K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	1,287	m^2
Area vetro	A_g	0,966	m^2
Area telaio	A_f	0,321	m^2
Fattore di forma	F_f	0,75	-
Perimetro vetro	L_g	4,300	m
Perimetro telaio	L_f	4,860	m


Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	4,0	0,20	0,020
Intercapedine	-	-	0,316
Secondo vetro	4,0	0,20	0,020
Resistenza superficiale esterna	-	-	0,074

<u>Legenda simboli</u>

S	Spessore	mm
λ	Conduttività termica	W/mK
R	Resistenza termica	m ² K/W

Codice: W12

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,790 W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Allvd 12mm 78x84

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Classe 1 secondo Norma

UNI EN 12207

Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,750} \hspace{0.2cm} -$

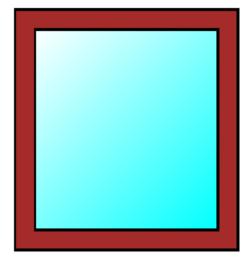
Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W f shut 0,6 -

Dimensioni del serramento


Larghezza **78,0** cm Altezza **84,0** cm

Trasmittanza termica del telaio	U_f	1,80	W/m ² K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	0,655	m^2
Area vetro	A_{g}	0,448	m^2
Area telaio	A_f	0,207	m^2
Fattore di forma	F_f	0,68	-
Perimetro vetro	L_g	2,680	m
Perimetro telaio	L_f	3,240	m


Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	4,0	0,20	0,020
Intercapedine	-	1	0,316
Secondo vetro	4,0	0,20	0,020
Resistenza superficiale esterna	-	-	0,074

Legenda simboli

s Spessore mm $\lambda \quad \text{Conduttivit\`a termica} \qquad W/mK \\ R \quad \text{Resistenza termica} \qquad m^2 K/W$

Codice: W13

Caratteristiche del modulo

Trasmittanza termica del modulo U 1,791 W/m²K

CARATTERISTICHE TERMICHE DEI COMPONENTI FINESTRATI secondo UNI TS 11300-1 - UNI EN ISO 6946 - UNI EN ISO 10077

Descrizione della finestra: Allvd 12mm 97x147

Caratteristiche del serramento

Tipologia di serramento Singolo

Classe di permeabilità Classe 1 secondo Norma

UNI EN 12207

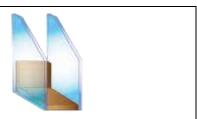
Dati per il calcolo degli apporti solari

Emissività $\epsilon \hspace{0.2cm} \textbf{0,837} \hspace{0.2cm} -$ Fattore tendaggi (invernale) $f_{c \hspace{0.1cm} inv} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore tendaggi (estivo) $f_{c \hspace{0.1cm} est} \hspace{0.2cm} \textbf{0,65} \hspace{0.2cm} -$ Fattore di trasmittanza solare $g_{gl,n} \hspace{0.2cm} \textbf{0,750} \hspace{0.2cm} -$

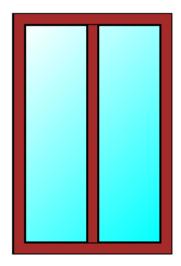
Caratteristiche delle chiusure oscuranti

Resistenza termica chiusure 0,00 m²K/W f shut 0,6 -

Dimensioni del serramento


Larghezza **97,0** cm Altezza **147,0** cm

Trasmittanza termica del telaio	U_f	1,80	W/m ² K
K distanziale	K_d	0,00	W/mK
Area totale	A_{w}	1,426	m^2
Area vetro	\mathbf{A}_{g}	1,011	m^2
Area telaio	A_f	0,415	m^2
Fattore di forma	F_f	0,71	-
Perimetro vetro	L_g	6,840	m
Perimetro telaio	L_f	4,880	m


Stratigrafia del pacchetto vetrato

Descrizione strato	S	λ	R
Resistenza superficiale interna	-	-	0,130
Primo vetro	4,0	0,20	0,020
Intercapedine	-	-	0,316
Secondo vetro	4,0	0,20	0,020
Resistenza superficiale esterna	-	-	0,074

Legenda simboli

s Spessore mm $\lambda \quad \text{Conduttivit\`a termica} \qquad W/mK \\ R \quad \text{Resistenza termica} \qquad m^2 K/W$

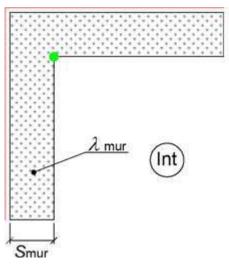
Codice: W14

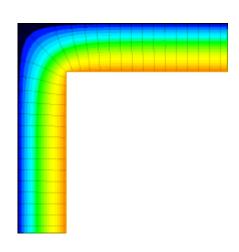
Caratteristiche del modulo

Trasmittanza termica del modulo U 1,791 W/m²K

CARATTERISTICHE TERMICHE DEI PONTI TERMICI

Descrizione del ponte termico: C - Angolo tra pareti


Codice: Z1


Tipologia ${\it C-Angolo\ tra\ pareti}$ Trasmittanza termica lineica di calcolo ${\it -0,568}$ W/mK Trasmittanza termica lineica di riferimento ${\it -1,136}$ W/mK Fattore di temperature f_{rsi} 0,488 -

Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

Note

C4 - Giunto tre due pareti con isolamento ripartito (sporgente) Trasmittanza termica lineica di riferimento (φe) = -1,136 W/mK.

Caratteristiche

Spessore muro Smur 400,0 mm Conduttività termica muro λ mur 1,060 W/mK

Verifica temperatura critica

<u>Condizioni interne:</u> <u>Condizioni esterne:</u>

Classe concentrazione del vapore **0,006** kg/m³ Temperature medie mensili - °C

Temperatura interna periodo di riscaldamento **20,0** °C

Umidità relativa superficiale ammissibile 80 %

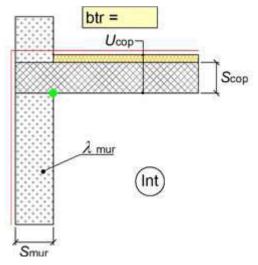
Mese	θί	θ _e	θsi	θ _{acc}	Verifica
ottobre	20,0	10,4	15,1	15,7	NEGATIVA
novembre	20,0	5,2	12,4	16,3	NEGATIVA
dicembre	20,0	-0,3	9,6	15,1	NEGATIVA
gennaio	20,0	-2,3	8,6	14,1	NEGATIVA
febbraio	20,0	2,0	10,8	13,6	NEGATIVA
marzo	20,0	7,7	13,7	13,5	POSITIVA
aprile	20,0	11,2	15,5	13,7	POSITIVA

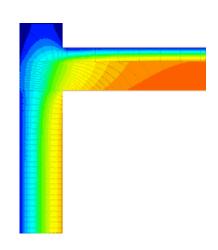
Legenda simboli

θ_{i}	Temperatura interna al locale	°C
θ_{e}	Temperatura esterna	°C
θ_{si}	Temperatura superficiale interna in luogo del ponte termico	°C
θ_{acc}	Temperatura minima accettabile per scongiurare il fenomeno di condensa	°C

CARATTERISTICHE TERMICHE DEI PONTI TERMICI

Descrizione del ponte termico: R - Parete - Copertura


Codice: Z2


Tipologia R - Parete - Copertura Trasmittanza termica lineica di calcolo **-0,052** W/mK Trasmittanza termica lineica di riferimento **-0,105** W/mK Fattore di temperature f_{rsi} 0,503

Riferimento **UNI EN ISO 14683 e UNI EN ISO 10211**

R18 - Giunto parete con isolamento ripartito - copertura isolata esternamente verso ambiente non climatizzato Note

Trasmittanza termica lineica di riferimento (ϕ e) = -0,105 W/mK.

Caratteristiche

Coeff. correzione temperatura	btr	0,90	-
Spessore copertura	Scop	250,0	mm
Spessore muro	Smur	400,0	mm
Trasmittanza termica copertura	Ucop	0,700	W/m²K
Conduttività termica muro	λmur	1,060	W/mK

Verifica temperatura critica

Condizioni interne: Condizioni esterne:

Classe concentrazione del vapore **0,004** kg/m³ Temperature medie mensili °C

Temperatura interna periodo di riscaldamento **20,0** °C

Umidità relativa superficiale ammissibile **80** %

Mese	θί	θ_{e}	θ_{si}	$oldsymbol{ heta}_{acc}$	Verifica
ottobre	20,0	11,4	15,7	14,2	POSITIVA
novembre	20,0	6,7	13,4	14,1	NEGATIVA
dicembre	20,0	1,7	10,9	11,8	NEGATIVA
gennaio	20,0	-0,1	10,0	10,5	NEGATIVA
febbraio	20,0	3,8	12,0	10,3	POSITIVA
marzo	20,0	8,9	14,5	11,3	POSITIVA
aprile	20,0	12,1	16,1	12,2	POSITIVA

Legenda simboli

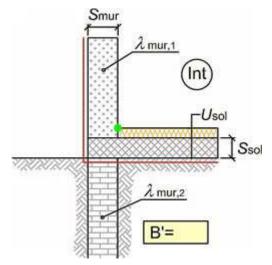
θ_{i}	Temperatura interna al locale	°C
θ_{e}	Temperatura esterna	°C
θ_{si}	Temperatura superficiale interna in luogo del ponte termico	°C
θ_{acc}	Temperatura minima accettabile per scongiurare il fenomeno di condensa	°C

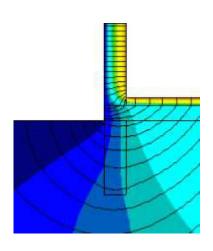
CARATTERISTICHE TERMICHE DEI PONTI TERMICI

<u>Descrizione del ponte termico:</u> <u>GF - Parete - Solaio controterra</u>

Codice: Z3

Tipologia GF - Parete - Solaio controterra


Trasmittanza termica lineica di calcolo -0,766 W/mK Trasmittanza termica lineica di riferimento -1,533 W/mK Fattore di temperature f_{rsi} 0,437 -


Riferimento UNI EN ISO 14683 e UNI EN ISO 10211

GF8 - Giunto parete con isolamento ripartito -solaio controterra con isolamento

Note *all'estradosso*

Trasmittanza termica lineica di riferimento (ϕ e) = -1,533 W/mK.

Caratteristiche

Conduttività termica muro 2	λmur,2	0,900	W/mK
Dimensione caratteristica del pavimento	В'	6,59	m
Spessore solaio	Ssol	400,0	mm
Spessore muro	Smur	400,0	mm
Trasmittanza termica solaio	Usol	0,420	W/m²K
Conduttività termica muro 1	λmur,1	1,060	W/mK

Verifica temperatura critica

<u>Condizioni interne:</u> <u>Condizioni esterne:</u>

Classe concentrazione del vapore **0,004** kg/m³ Temperature medie mensili - °C

Temperatura interna periodo di riscaldamento 20,0 °C

Umidità relativa superficiale ammissibile **80** %

Mese	θi	θe	θsi	Өасс	Verifica
ottobre	20,0	14,1	16,7	14,2	POSITIVA
novembre	20,0	10,6	14,7	14,1	POSITIVA
dicembre	20,0	8,0	13,3	11,8	POSITIVA
gennaio	20,0	5,3	11,7	11,2	POSITIVA
febbraio	20,0	4,3	11,1	10,3	POSITIVA
marzo	20,0	6,4	12,4	11,3	POSITIVA
aprile	20,0	9,3	14,0	12,2	POSITIVA

Legenda simboli

Θ_i	Temperatura interna al locale	°C
θ_{e}	Temperatura esterna	°C
θ_{si}	Temperatura superficiale interna in luogo del ponte termico	°C
θ_{acc}	Temperatura minima accettabile per scongiurare il fenomeno di condensa	°C

FABBISOGNO DI POTENZA TERMICA INVERNALE secondo UNI EN 12831

Dati climatici della località:

Località	Diano d'Alba		
Provincia	Cuneo		
Altitudine s.l.m.		496	m
Gradi giorno		2930	
Zona climatica		E	
Temperatura esterna di progetto		-10,1	°C

Dati geometrici dell'intero edificio:

Superficie in pianta netta	215,40	m^2
Superficie esterna lorda	771,40	m^2
Volume netto	654,22	m^3
Volume lordo	908,07	m^3
Rapporto S/V	0,85	m ⁻¹

Opzioni di calcolo:

Metodologia di calcolo **Vicini assenti**Coefficiente di sicurezza adottato **1,08** -

Coefficienti di esposizione solare:

Nord: **1,20**

Nord-Ovest: **1,15** Nord-Est: **1,20**

Ovest: **1,10** Est: **1,15**

Sud-Ovest: **1,05** Sud-Est: **1,10**

Sud: 1,00

RIASSUNTO DISPERSIONI DEI LOCALI

Opzioni di calcolo:

Metodologia di calcolo *Vicini assenti*

Coefficiente di sicurezza adottato 1,08 -

Zona 1 - Circolo fabbisogno di potenza dei locali

Loc	Descrizione	θi [°C]	n [1/h]	Ф _{tr} [W]	Ф _{ve} [W]	Φ _{rh} [W]	Фы [W]	Ф _{hl sic} [W]
1	Sala circolo	20,0	0,50	1948	986	0	2935	3169
2	Veranda	20,0	0,50	4017	1004	0	5021	5422
3	Cucina	20,0	0,50	391	119	0	511	552
4	W.c.	24,0	1,00	185	96	0	281	303
5	Ripostiglio	20,0	0,50	131	39	0	170	184
6	Ufficio	20,0	0,50	325	<i>57</i>	0	382	413
7	Sala del biliardo	20,0	0,50	2703	915	0	3618	3908
8	Servizi disabili	24,0	1,00	<i>358</i>	271	0	629	<i>67</i> 9

Totale: 10059 3487 0 13546 14630

Totale Edifico: 10059 3487 0 13546 14630

<u>Legenda simboli</u>

θi Temperatura interna del locale

n Ricambio d'aria del locale

 $\begin{array}{ll} \Phi_{tr} & \quad & \text{Potenza dispersa per trasmissione} \\ \Phi_{ve} & \quad & \text{Potenza dispersa per ventilazione} \end{array}$

 Φ_{rh} Potenza dispersa per intermittenza

 $\Phi_{hl} \hspace{1cm} \hbox{Potenza totale dispersa}$

RIASSUNTO DISPERSIONI DELLE ZONE

Opzioni di calcolo:

Metodologia di calcolo *Vicini assenti*

Coefficiente di sicurezza adottato 1,08 -

Dati geometrici delle zone termiche:

Zona	Descrizione	V [m³]	V _{netto} [m³]	S _u [m ²]	S _{lorda} [m²]	S [m²]	S/V [-]
1	Circolo	908,07	654,22	215,40	250,02	771,40	0,85

Totale: 908,07 654,22 215,40 250,02 771,40 0,85

Fabbisogno di potenza delle zone termiche

Zona	Descrizione	Ф _{tr} [W]	Ф _{ve} [W]	Ф _{rh} [W]	Ф _ы [W]	Ф _{hl sic} [W]
1	Circolo	10059	3487	0	13546	14630

Totale: 10059 3487 0 13546 14630

Legenda simboli

V Volume lordo V_{netto} Volume netto

 $\begin{array}{ll} S_u & & Superficie \ in \ pianta \ netta \\ S_{lorda} & & Superficie \ in \ pianta \ lorda \end{array}$

S Superficie esterna lorda (senza strutture di tipo N)

S/V Fattore di forma

 $\begin{array}{ll} \Phi_{tr} & \text{Potenza dispersa per trasmissione} \\ \Phi_{ve} & \text{Potenza dispersa per ventilazione} \\ \Phi_{rh} & \text{Potenza dispersa per intermittenza} \end{array}$

 $\Phi_{hl} \qquad \quad \text{Potenza totale dispersa}$

FABBISOGNO DI ENERGIA PRIMARIA secondo UNI/TS 11300-2 e UNI/TS 11300-4

Zona 1 : Circolo

Modalità di funzionamento

Circuito Riscaldamento Circolo

Intermittenza

Regime di funzionamento Continuo

SERVIZIO RISCALDAMENTO (impianto idronico)

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di emissione	η _{H,e}	94,0	%
Rendimento di regolazione	η _{H,rg}	99,0	%
Rendimento di distribuzione utenza	η _{H,du}	99,0	%
Rendimento di generazione (risp. a en. pr. non rinn.)	$\eta_{H,gen,p,nren}$	211,3	%
Rendimento di generazione (risp. a en. pr. totale)	$\eta_{H,gen,p,tot}$	170,2	%
Rendimento globale medio stagionale (risp. a en. pr. non rinn.)	η _{H,g,p,nren}	271,9	%
Rendimento globale medio stagionale (risp. a en. pr. totale)	η _{H,g,p,tot}	188,5	%

Dettaglio rendimenti dei singoli generatori:

Generatore	η _{H,gen,ut}	η _{H,gen,p,nren}	η _{H,gen,p,tot}
	[%]	[%]	[%]
Rendimento di generazione mensile noto	412,0	211,3	170,2

Legenda simboli

 $\eta_{\text{H},\text{gen},\text{ut}}$ Rendimento di generazione rispetto all'energia utile

 $\eta_{\text{H,gen,p,nren}}$ Rendimento di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{\text{H,gen,p,tot}}$ Rendimento di generazione rispetto all'energia primaria totale

Dati per circuito

Circuito Riscaldamento Circolo

Caratteristiche sottosistema di emissione:

Tipo di terminale di erogazione Bocchette in sistemi ad aria calda

Potenza nominale dei corpi scaldanti 14630 W Fabbisogni elettrici 0 W

Rendimento di emissione **92,0** %

Caratteristiche sottosistema di regolazione:

Via Alba-Cortemilia n.102, 12055 Diano D'Alba (CN)

Tipo Solo per singolo ambiente
Caratteristiche P banda proporzionale 0,5 °C

Rendimento di regolazione 99,0 %

Caratteristiche sottosistema di distribuzione utenza:

Metodo di calcolo **Semplificato**

Tipo di impianto Autonomo, edificio condominiale
Posizione impianto Impianto a piano intermedio

Posizione tubazioni

Isolamento tubazioni Isolamento con spessori conformi alle prescrizioni del

DPR n. 412/93

Numero di piani -

Fattore di correzione

Rendimento di distribuzione utenza

99,0 %

Fabbisogni elettrici

0 W

SERVIZIO ACQUA CALDA SANITARIA

Rendimenti stagionali dell'impianto:

Descrizione	Simbolo	Valore	u.m.
Rendimento di erogazione	η _{w,er}	100,0	%
Rendimento di distribuzione utenza	$\eta_{W,du}$	92,6	%
Rendimento di generazione (risp. a en. utile)	$\eta_{W,gen,ut}$	412,0	%
Rendimento di generazione (risp. a en. pr. non rinn.)	$\eta_{W,gen,p,nren}$	211,3	%
Rendimento di generazione (risp. a en. pr. non tot.)	η _{W,gen,p,tot}	170,2	%
Rendimento globale medio stagionale (risp. a en. pr. non rinn.)	$\eta_{W,g,p,nren}$	<i>7</i> 99,1	%
Rendimento globale medio stagionale (risp. a en. pr. tot.)	$\eta_{W,g,p,tot}$	283,1	%

Dati per zona

Zona: Circolo

Fabbisogno giornaliero di acqua sanitaria [l/g]:

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
195	195	195	195	195	195	195	195	195	195	195	195

Categoria DPR 412/93 *E.4 (3)*

Temperatura di erogazione 40,0 °C

Temperatura di alimentazione [°C]

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
10,9	10,9	10,9	10,9	10,9	10,9	10,9	10,9	10,9	10,9	10,9	10,9

Fabbisogno giornaliero per posto 65,0 l/g posto

Numero di posti 3

Fattore di occupazione [%]

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
100	100	100	100	100	100	100	100	100	100	100	100

<u>Caratteristiche sottosistema di erogazione</u>:

Rendimento di erogazione 100,0 %

<u>Caratteristiche sottosistema di distribuzione utenza</u>:

Metodo di calcolo **Semplificato**

Sistemi installati dopo l'entrata in vigore della legge 373/76, rete corrente parzialmente in ambiente climatizzato

SOTTOSISTEMA DI GENERAZIONE

Dati generali:

Servizio Riscaldamento e acqua calda sanitaria
Tipo di generatore Rendimento di generazione mensile noto

Metodo di calcolo -

Potenza utile nominale $\Phi_{gn,Pn}$ **18,00** kW

Rendimento mensile di generazione η_{gn}

Gen	Febb	Mar	Apr	Mag	Giu	Lug	Ago	Sett	Ott	Nov	Dic
412,0	412,0	412,0	412,0	412,0	412,0	412,0	412,0	412,0	412,0	412,0	412,0

Vettore energetico:

Tipo Energia elettrica

Fattore di conversione in energia primaria (rinnovabile) $f_{p,ren}$ 0,470 - Fattore di conversione in energia primaria (non rinnovabile) $f_{p,nren}$ 1,950 - Fattore di conversione in energia primaria f_p 2,420 -

Fattore di emissione di CO₂ 0,4600 kg_{CO2}/kWh

RISULTATI DI CALCOLO MENSILI

Risultati mensili servizio riscaldamento - impianto idronico

Zona 1 : Circolo

Fabbisogni termici ed elettrici

			Fabbisogni termici								
Mese	99	Q _{H,nd} [kWh]	Q _{H,sys,out} [kWh]	Q' _{H,sys,out} [kWh]	Q _{H,sys,out,int} [kWh]	Q _{H,sys,out,cont} [kWh]	Q _{H,sys,out,corr} [kWh]	Q _{H,gen,out} [kWh]	Q _{H,gen,in} [kWh]		
gennaio	31	4376	4376	4368	4368	4368	4368	4741	1151		
febbraio	28	1967	1967	1960	1960	1960	1960	2127	516		
marzo	31	687	<i>687</i>	<i>679</i>	679	679	679	737	179		
aprile	15	59	59	<i>55</i>	55	<i>55</i>	55	60	15		
maggio	-	-	1	1	-	1	-	1	-		
giugno	-	-	1	1	-	1	-	1	-		
luglio	-	-	1	1	-	1	-	1	-		
agosto	-	-	-	1	-	1	-	-	-		
settembre	1			-	-	-	-		-		
ottobre	17	287	287	282	282	282	282	306	74		
novembre	30	2280	2280	2272	2272	2272	2272	2466	599		
dicembre	31	3959	3959	3951	3951	3951	3951	4289	1041		

TOTALI	183	13616	13616	13567	13567	13567	13567	14727	3574	

gg Giorni compresi nel periodo di calcolo per riscaldamento

Q_{H,nd} Fabbisogno di energia termica utile del fabbricato (ventilazione naturale) Q_{H,sys,out} Fabbisogno di energia termica utile dell'edificio (ventilazione meccanica)

Q'_{H,sys,out} Fabbisogno ideale netto

 $\begin{array}{lll} Q_{H,sys,out,int} & Fabbisogno \ corretto \ per \ intermittenza \\ Q_{H,sys,out,cont} & Fabbisogno \ corretto \ per \ contabilizzazione \\ Q_{H,sys,out,corr} & Fabbisogno \ corretto \ per \ ulteriori \ fattori \\ Fabbisogno \ in \ uscita \ dalla \ generazione \\ Q_{H,gen,in} & Fabbisogno \ in \ ingresso \ alla \ generazione \end{array}$

			Fabbisogr	ni elettrici	
Mese	99	Q _{H,em,aux} [kWh]	Q _{H,du,aux} [kWh]	Q _{H,dp,aux} [kWh]	Q _{H,gen,aux} [kWh]
gennaio	31	0	0	0	0
febbraio	28	0	0	0	0
marzo	31	0	0	0	0
aprile	15	0	0	0	0
maggio	-		1		-
giugno	-		1		-
luglio	1	1	1	1	-
agosto	1		1	1	-
settembre	-	-	-	-	-
ottobre	17	0	0	0	0
novembre	30	0	0	0	0
dicembre	31	0	0	0	0
TOTALI	183	0	0	0	0

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

 $Q_{\text{H,em,aux}}$ Fabbisogno elettrico ausiliari emissione

 $Q_{H,du,aux}$ Fabbisogno elettrico ausiliari distribuzione di utenza $Q_{H,dp,aux}$ Fabbisogno elettrico ausiliari distribuzione primaria

Q_{H,gen,aux} Fabbisogno elettrico ausiliari generazione

Dettagli impianto termico

Mese	99	η _{н,rg} [%]	η _{н,d} [%]	η _{н,s} [%]	η н,др [%]	η _{H,gen,p,nren} [%]	η _{H,gen,p,tot} [%]	η _{Η,g,p,nren} [%]	η _{Η,g,p,tot} [%]
gennaio	31	99,0	99,0	100,0	100,0	211,3	170,2	234,0	174,2
febbraio	28	99,0	99,0	100,0	100,0	211,3	170,2	420,4	229,5
marzo	31	99,0	99,0	100,0	100,0	211,3	170,2	0,0	384,1
aprile	15	99,0	99,0	100,0	100,0	211,3	170,2	0,0	406,7
maggio	-	-	-	-	-	-	-	-	-
giugno	-	-	-	-	-	-	-	-	-
luglio	-	-	-	-	-	-	-	-	-
agosto	-	-	-	-	-	-	-	-	-
settembre	-	-	-	-	-	-	-	-	-
ottobre	17	99,0	99,0	100,0	100,0	211,3	170,2	0,0	385,6
novembre	30	99,0	99,0	100,0	100,0	211,3	170,2	244,4	178,4
dicembre	31	99,0	99,0	100,0	100,0	211,3	170,2	227,8	171,7

Legenda simboli

gg Giorni compresi nel periodo di calcolo per riscaldamento

 $\begin{array}{ll} \eta_{\text{H,rg}} & \text{Rendimento mensile di regolazione} \\ \eta_{\text{H,d}} & \text{Rendimento mensile di distribuzione} \\ \eta_{\text{H,s}} & \text{Rendimento mensile di accumulo} \end{array}$

n_{H.dp} Rendimento mensile di distribuzione primaria

η_{H,gen,p,nren} Rendimento mensile di generazione rispetto all'energia primaria non rinnovabile

η_{H,gen,p,tot} Rendimento mensile di generazione rispetto all'energia primaria totale

 $\eta_{H,g,p,nren}$ Rendimento globale medio mensile rispetto all'energia primaria non rinnovabile

 $\eta_{\text{H,g,p,tot}}$ Rendimento globale medio mensile rispetto all'energia primaria totale

<u>Dettagli generatore</u>: 1 - Rendimento di generazione mensile noto

Mese	gg	Q _{H,gn,out} [kWh]	Q _{H,gn,in} [kWh]	η _{H,gen,ut} [%]	η _{H,gen,p,nren} [%]	η _{H,gen,p,tot} [%]	Combustibile [kWh]
gennaio	31	4741	1151	412,0	211,3	170,2	0
febbraio	28	2127	516	412,0	211,3	170,2	0
marzo	31	<i>737</i>	179	412,0	211,3	170,2	0
aprile	15	60	15	412,0	211,3	170,2	0
maggio	1	1	1	1	1	ı	-
giugno	1	1	1	1	1	ı	-
luglio	1	1	1	1	1	ı	-
agosto	1	1	1	1	1	ı	-
settembre	1	1	1	1	1	ı	-
ottobre	17	306	74	412,0	211,3	170,2	0
novembre	30	2466	599	412,0	211,3	170,2	0
dicembre	31	4289	1041	412,0	211,3	170,2	0

Mese	99	FC [-]
gennaio	31	0,354
febbraio	28	0,176
marzo	31	0,055
aprile	15	0,009
maggio	-	1
giugno	-	ı
luglio	-	1
agosto	-	1
settembre	-	1
ottobre	17	0,042
novembre	30	0,190
dicembre	31	0,320

Legenda simboli

 $\begin{array}{ll} gg & Giorni \ compresi \ nel \ periodo \ di \ calcolo \ per \ riscaldamento \\ Q_{H,gn,out} & Energia \ termica \ fornita \ dal \ generatore \ per \ riscaldamento \\ Q_{H,gn,in} & Energia \ termica \ in \ ingresso \ al \ generatore \ per \ riscaldamento \\ \eta_{H,gen,ut} & Rendimento \ mensile \ del \ generatore \ rispetto \ all'energia \ utile \end{array}$

 $\eta_{\text{H},\text{gen},p,\text{nren}} \qquad \qquad \text{Rendimento mensile del generatore rispetto all'energia primaria non rinnovabile}$

 $\eta_{H,gen,p,tot}$ Rendimento mensile del generatore rispetto all'energia primaria totale

Combustibile Consumo mensile di combustibile

FC Fattore di carico

Fabbisogno di energia primaria impianto idronico

Mese	gg	Q _{H,gn,in} [kWh]	Q _{H,aux} [kWh]	Q _{H,p,nren} [kWh]	Q _{н,p,tot} [kWh]
gennaio	31	1151	1151	1870	2512
febbraio	28	516	516	468	857
marzo	31	179	179	0	<i>17</i> 9
aprile	15	15	15	0	15

novembre dicembre	30 31	599 1041	599 1041	933 1738	1278 2306
ottobre	17	74	74	0	74
settembre	_	-	-	-	-
agosto	-	-	-	-	-
luglio	-	-	-	-	-
giugno	-	•	-	-	-
maggio	-	•	-	-	-

gg Giorni compresi nel periodo di calcolo per riscaldamento

Q_{H,gn,in} Energia termica totale in ingresso al sottosistema di generazione per riscaldamento

Q_{H,aux} Fabbisogno elettrico totale per riscaldamento

Q_{H,p,nren} Fabbisogno di energia primaria non rinnovabile per riscaldamento

 $Q_{H,p,tot}$ Fabbisogno di energia primaria totale per riscaldamento

Pannelli solari fotovoltaici

Energia elettrica da produzione fotovoltaica [kWh]:

	Gen	Feb	Mar	Apr	Мад	Giu	Lug	Ago	Sett	Ott	Nov	Dic
	247	435	<i>567</i>	692	824	843	963	813	643	471	185	198
	marketara a	and the same				.1.	_				C LAA/I-	1

Fabbisogno di energia primaria non rinnovabile kWh/anno $Q_{H,p,nren}$ *5008* Fabbisogno di energia primaria totale $Q_{H,p,tot}$ *7222* kWh/anno Rendimento globale medio stagionale 271,9 % $\eta_{\text{H,g,p,nren}}$ (rispetto all'energia primaria non rinnovabile) Rendimento globale medio stagionale 188,5 $\eta_{H,g,p,tot}$ (rispetto all'energia primaria totale) 2568 kWh/anno Consumo di energia elettrica effettivo

Risultati mensili servizio acqua calda sanitaria

Zona 1 : Circolo

Fabbisogni termici ed elettrici

			Fab	bisogni term	ici		Fabb	oisogni elet	trici
Mese	99	Qw,sys,out [kWh]	Qw,sys,out,rec [kWh]	Qw,sys,out,cont [kWh]	Qw,gen,out [kWh]	Qw,gen,in [kWh]	Qw,ric,aux [kWh]	Qw, _{dp,aux} [kWh]	Qw,gen,aux [kWh]
gennaio	31	205	205	205	221	54	0	0	0
febbraio	28	185	185	185	200	48	0	0	0
marzo	31	205	205	205	221	54	0	0	0
aprile	30	198	198	198	214	52	0	0	0
maggio	31	205	205	205	221	54	0	0	0
giugno	30	198	198	198	214	52	0	0	0
luglio	31	205	205	205	221	54	0	0	0
agosto	31	205	205	205	221	54	0	0	0
settembre	30	198	198	198	214	52	0	0	0
ottobre	31	205	205	205	221	54	0	0	0
novembre	30	198	198	198	214	52	0	0	0
dicembre	31	205	205	205	221	54	0	0	0
TOTALI	365	2409	2409	2409	2601	631	0	0	0

gg Giorni compresi nel periodo di calcolo per acqua sanitaria

Qw,sys,out Fabbisogno ideale per acqua sanitaria

 $Q_{W,sys,out,rec}$ Fabbisogno corretto per recupero di calore dai reflui di scarico delle docce

 $\begin{array}{ll} Q_{W,sys,out,cont} & Fabbisogno \ corretto \ per \ contabilizzazione \\ Q_{W,gen,out} & Fabbisogno \ in \ uscita \ dalla \ generazione \\ Q_{W,gen,in} & Fabbisogno \ in \ ingresso \ alla \ generazione \\ Q_{W,ric,aux} & Fabbisogno \ elettrico \ ausiliari \ ricircolo \end{array}$

Q_{W,dp,aux} Fabbisogno elettrico ausiliari distribuzione primaria

Q_{W,gen,aux} Fabbisogno elettrico ausiliari generazione

Dettagli impianto termico

Mese	99	η _{w,d} [%]	η _{w,s} [%]	η _{w,ric} [%]	ղ _{w,dp} [%]	η _{w,gen,p,nren} [%]	ηw _{,gen,p,tot}	η _{w,g,p,nren} [%]	η _{w,g,p,tot} [%]
gennaio	31	92,6			-	211,3	170,2	234,8	174,7
febbraio	28	92,6	-	-	-	211,3	170,2	420,9	229,8
marzo	31	92,6	-	-	-	211,3	170,2	0,0	381,5
aprile	30	92,6	-	-	-	211,3	170,2	0,0	381,5
maggio	31	92,6	-	-	-	211,3	170,2	0,0	381,5
giugno	30	92,6	1	1	-	211,3	170,2	0,0	381,5
luglio	31	92,6	-	-	-	211,3	170,2	14765343 04756280 000,0	381,5
agosto	31	92,6	-	-	-	211,3	170,2	14765343 04756280 000,0	381,5
settembre	30	92,6	-	-	-	211,3	170,2	0,0	381,5
ottobre	31	92,6	-	-	-	211,3	170,2	0,0	381,5
novembre	30	92,6	-	-	-	211,3	170,2	244,8	178,7
dicembre	31	92,6	-	-	-	211,3	170,2	228,5	172,2

Legenda simboli

gg Giorni compresi nel periodo di calcolo per acqua sanitaria

 $\begin{array}{ll} \eta_{\text{W,d}} & \text{Rendimento mensile di distribuzione} \\ \eta_{\text{W,s}} & \text{Rendimento mensile di accumulo} \\ \eta_{\text{W,ric}} & \text{Rendimento mensile della rete di ricircolo} \\ \eta_{\text{W,dp}} & \text{Rendimento mensile di distribuzione primaria} \end{array}$

 $\eta_{W,gen,p,nren}$ Rendimento mensile di generazione rispetto all'energia primaria non rinnovabile

 $\eta_{W,gen,p,tot}$ Rendimento mensile di generazione rispetto all'energia primaria totale

 $\eta_{W,g,p,nren} \qquad \text{Rendimento globale medio mensile rispetto all'energia primaria non rinnovabile}$

<u>Dettagli generatore</u>: 1 - Rendimento di generazione mensile noto

Mese	99	Q _{w,gn,out} [kWh]	Qw,gn,in [kWh]	η _{w,gen,ut} [%]	η _{w,gen,p,nren} [%]	η _{w,gen,p,tot} [%]	Combustibile [kWh]
gennaio	31	221	54	412,0	211,3	170,2	0
febbraio	28	200	48	412,0	211,3	170,2	0
marzo	31	221	54	412,0	211,3	170,2	0
aprile	30	214	52	412,0	211,3	170,2	0
maggio	31	221	54	412,0	211,3	170,2	0
giugno	30	214	52	412,0	211,3	170,2	0
luglio	31	221	54	412,0	211,3	170,2	0
agosto	31	221	54	412,0	211,3	170,2	0
settembre	30	214	52	412,0	211,3	170,2	0
ottobre	31	221	54	412,0	211,3	170,2	0
novembre	30	214	52	412,0	211,3	170,2	0
dicembre	31	221	54	412,0	211,3	170,2	0

Mese	gg	FC [-]
gennaio	31	0,016
febbraio	28	0,016
marzo	31	0,016
aprile	30	0,016
maggio	31	0,016
giugno	30	0,016
luglio	31	0,016
agosto	31	0,016
settembre	30	0,016
ottobre	31	0,016
novembre	30	0,016
dicembre	31	0,016

 $\begin{array}{ll} gg & Giorni \ compresi \ nel \ periodo \ di \ calcolo \ per \ acqua \ sanitaria \\ Q_{W,gn,out} & Energia \ termica \ fornita \ dal \ generatore \ per \ acqua \ sanitaria \\ Q_{W,gn,in} & Energia \ termica \ in \ ingresso \ al \ generatore \ per \ acqua \ sanitaria \\ \eta_{W,gen,ut} & Rendimento \ mensile \ del \ generatore \ rispetto \ all'energia \ utile \end{array}$

 $\eta_{W,gen,p,nren}$ Rendimento mensile del generatore rispetto all'energia primaria non rinnovabile

 $\eta_{W,gen,p,tot}$ Rendimento mensile del generatore rispetto all'energia primaria totale

Combustibile Consumo mensile di combustibile

FC Fattore di carico

Fabbisogno di energia primaria impianto acqua calda sanitaria

Mese	Mese gg Qw,gn,in [kWh]		Q _{w,aux} [kWh]	Q _{w,p,nren} [kWh]	Q _{w,p,tot} [kWh]
gennaio	31	54	54	87	117
febbraio	28	48	48	44	80
marzo	31	54	54	0	54
aprile	30	52	52	0	52
maggio	31	54	54	0	54
giugno	30	52	52	0	52
luglio	31	54	54	0	54
agosto	31	54	54	0	54
settembre	30	52	52	0	52
ottobre	31	54	54	0	54
novembre	30	52	52	81	111
dicembre	31	54	54	90	119
TOTALI	365	631	631	301	851

Legenda simboli

gg Giorni compresi nel periodo di calcolo per acqua sanitaria

 $Q_{W,gn,in}$ Energia termica totale in ingresso al sottosistema di generazione per acqua sanitaria

Qw,aux Fabbisogno elettrico totale per acqua sanitaria

 $Q_{W,p,nren} \qquad \qquad \text{Fabbisogno di energia primaria non rinnovabile per acqua sanitaria} \\$

 $Q_{W,p,tot}$ Fabbisogno di energia primaria totale per acqua sanitaria

Pannelli solari fotovoltaici

Energia elettrica da produzione fotovoltaica [kWh]:

Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Sett	Ott	Nov	Dic
247	435	567	692	824	843	963	813	643	471	185	198

Fabbisogno di energia primaria non rinnovabile	$Q_{W,p,nren}$	301	kWh/anno
Fabbisogno di energia primaria totale	$Q_{W,p,tot}$	851	kWh/anno
Rendimento globale medio stagionale (rispetto all'energia primaria non rinnovabile)	$\eta_{W,g,p,nren}$	<i>7</i> 99,1	%
Rendimento globale medio stagionale (rispetto all'energia primaria totale)	$\eta_{W,g,p,tot}$	283,1	%
Consumo di energia elettrica effettivo		155	kWh/anno

FABBISOGNO DI ENERGIA PRIMARIA ILLUMINAZIONE

secondo UNI/TS 11300-2

Zona 1 - Circolo

<u>Illuminazione artificiale interna dei locali climatizzati</u>:

Locale: 1 - Sala circolo	
Potenza elettrica installata dei dispositivi luminosi	o W
Livello di illuminamento E	0
Tempo di operatività durante il giorno 125	o h/anno
Tempo di operatività durante la notte	0 h/anno
Fattore dipendente dal tipo di controllo dell'illuminazione F _{OC}	0 -
Fattore di assenza medio F _A	
Fattore di manutenzione MF 0,8	0 -
Area che beneficia dell'illuminazione naturale A _d 68,7	3 m ²
Illuminazione per dispositivi di controllo e di emergenza :	
Fabbisogno per i comandi di illuminazione automatici 5,0	o kWh _{el} /(m²anno)
Fabbisogno per l'illuminazione di emergenza 1,0	o kWh _{el} /(m²anno)
Locale: 2 - Veranda	
Potenza elettrica installata dei dispositivi luminosi 28	0 W
Livello di illuminamento E	0
Tempo di operatività durante il giorno	o h/anno
Tempo di operatività durante la notte	0 h/anno
Fattore dipendente dal tipo di controllo dell'illuminazione F _{OC} 1,0	0 -
Fattore di assenza medio F _A	0 -
Fattore di manutenzione MF 0,8	0 -
Area che beneficia dell'illuminazione naturale A _d 56,6	1 m ²
Illuminazione per dispositivi di controllo e di emergenza :	
Fabbisogno per i comandi di illuminazione automatici 5,0	o kWh _{el} /(m²anno)
Fabbisogno per l'illuminazione di emergenza	o kWh _{el} /(m²anno)
Locale: 3 - Cucina	
Potenza elettrica installata dei dispositivi luminosi	5 W
Livello di illuminamento E	0
Tempo di operatività durante il giorno 125	o h/anno
Tempo di operatività durante la notte	0 h/anno
Fattore dipendente dal tipo di controllo dell'illuminazione F _{OC}	0 -

Via Alba-Cortemilia n.102, 12055 Diano D'Alba (CN)		
Fattore di assenza medio F _A	0,00	-
Fattore di manutenzione MF	0,80	-
Area che beneficia dell'illuminazione naturale A_{d}	8,33	m ²
Illuminazione per dispositivi di controllo e di emergenza :		
Fabbisogno per i comandi di illuminazione automatici	5,00	kWh _{el} /(m²anno)
Fabbisogno per l'illuminazione di emergenza	1,00	kWh _{el} /(m²anno)
Locale: 4 - W.c.		
Potenza elettrica installata dei dispositivi luminosi	38	W
Livello di illuminamento E	Basso	
Tempo di operatività durante il giorno	1250	h/anno
Tempo di operatività durante la notte	1250	h/anno
rempo di operatività darante la notte	1250	ny anno
Fattore dipendente dal tipo di controllo dell'illuminazione F_{OC}	1,00	-
Fattore di assenza medio F _A	0,00	-
Fattore di manutenzione MF	0,80	-
Area che beneficia dell'illuminazione naturale A _d	2,94	m^2
Illuminazione per dispositivi di controllo e di emergenza :		
Fabbisogno per i comandi di illuminazione automatici	5,00	kWh _{el} /(m²anno)
Fabbisogno per l'illuminazione di emergenza	1,00	kWh _{el} /(m²anno)
Locale: 5 - Ripostiglio		
Potenza elettrica installata dei dispositivi luminosi	19	W
Livello di illuminamento E	Basso	
Tempo di operatività durante il giorno	1250	h/anno
Tempo di operatività durante la notte	1250	h/anno
Fattore dipendente dal tipo di controllo dell'illuminazione Foc	1,00	-
Fattore di assenza medio F _A	0,00	-
Fattore di manutenzione MF	0,80	-
Area che beneficia dell'illuminazione naturale A_{d}	2,70	m ²
Illuminazione per dispositivi di controllo e di emergenza :		
Fabbisogno per i comandi di illuminazione automatici	5,00	kWh _{el} /(m ² anno)
Fabbisogno per l'illuminazione di emergenza	1,00	kWh _{el} /(m²anno)
Locale: 6 - Ufficio		
Potenza elettrica installata dei dispositivi luminosi	<i>35</i>	W
Livello di illuminamento E	Basso	
Tempo di operatività durante il giorno	1250	h/anno
Tempo di operatività durante la notte	1250	h/anno
Fattore dipendente dal tipo di controllo dell'illuminazione Foc	1,00	-
Fattore dipendente dal tipo di controllo dell'illuminazione F_{OC} Fattore di assenza medio F_{A}	0,00	- -
		- - - m ²

Illuminazione per dispositivi di controllo e di emergenza :	
Fabbisogno per i comandi di illuminazione automatici	
Fabbisogno per l'illuminazione di emergenza	

5,00 kWh_{el}/(m²anno) **1,00** kWh_{el}/(m²anno)

Locale: 7 - Sala del biliardo

Potenza elettrica installata dei dispositivi luminosi 280 W Livello di illuminamento E Basso

Tempo di operatività durante il giorno 1250 h/anno

Tempo di operatività durante la notte 1250 h/anno

Illuminazione per dispositivi di controllo e di emergenza :

Fabbisogno per i comandi di illuminazione automatici 5,00 kWh_{el}/(m²anno) Fabbisogno per l'illuminazione di emergenza 1,00 kWh_{el}/(m²anno)

Locale: 8 - Servizi disabili

Potenza elettrica installata dei dispositivi luminosi 38 W Livello di illuminamento E Basso

Tempo di operatività durante il giorno 1250 h/anno

Tempo di operatività durante la notte 1250 h/anno

Illuminazione per dispositivi di controllo e di emergenza :

Fabbisogno per i comandi di illuminazione automatici 5,00 kWh_{el}/(m²anno) Fabbisogno per l'illuminazione di emergenza 1,00 kWh_{el}/(m²anno)

Illuminazione artificiale interna dei locali non climatizzati:

Potenza elettrica installata dei dispositivi luminosi **0** W

Ore di accensione (valore annuo) 0 h/anno

FABBISOGNI SERVIZIO ILLUMINAZIONE

Fabbisogni elettrici per illuminazione dei locali climatizzati

Zona	Locale	Descrizione	Q _{ill,int,a} [kWh _{el}]	Q _{ill,int,p} [kWh _{el}]	Q _{ill,int} [kWh _{el}]
1	1	Sala circolo	350	412	762
1	2	Veranda	574	340	914
1	3	Cucina	81	50	131

1	4	W.c.	88	18	106
1	5	Ripostiglio	48	16	64
1	6	Ufficio	72	24	96
1	7	Sala del biliardo	612	383	995
1	8	Servizi disabili	88	50	138

 $Q_{ill,int,a} \qquad \quad \text{Fabbisogno di energia elettrica per l'illuminazione artificiale dei locali climatizzati}$

Q_{ill,int,p} Fabbisogno di energia elettrica per dispositivi di controllo e di emergenza Q_{ill,int} Fabbisogno di energia elettrica totale per l'illuminazione artificiale interna

Fabbisogni mensili per illuminazione

Mese	Giorni	Qill,int,a [kWh _{el}]	Qill,int,p [kWh _{el}]	Qill,int,u [kWh _{el}]	Qill,int [kWh _{el}]	Q _{ill,est} [kWh _{el}]	Qiii [kWh _{el}]	Q _{p,ill} [kWh]
Gennaio	31	170	110	0	279	0	<i>27</i> 9	545
Febbraio	28	149	99	0	248	0	248	484
Marzo	31	161	110	0	270	0	270	527
Aprile	30	154	106	0	260	0	260	507
Maggio	31	158	110	0	268	0	268	523
Giugno	30	153	106	0	259	0	259	506
Luglio	31	158	110	0	268	0	268	522
Agosto	31	158	110	0	268	0	268	523
Settembre	30	155	106	0	262	0	262	510
Ottobre	31	163	110	0	273	0	273	533
Novembre	30	163	106	0	269	0	269	525
Dicembre	31	171	110	0	281	0	281	547
TOTALI		1913	1292	0	3206	0	3206	6251

Legenda simboli

Q_{ill,int,a} Fabbisogno di energia elettrica per l'illuminazione artificiale dei locali climatizzati

 $Q_{ill,int,p}$ Fabbisogno di energia elettrica per dispositivi di controllo e di emergenza

Q_{ill,int,u} Fabbisogno di energia elettrica per l'illuminazione artificiale dei locali non climatizzati

 $Q_{ill,int}$ Fabbisogno di energia elettrica totale per l'illuminazione artificiale interna $Q_{ill,est}$ Fabbisogno di energia elettrica totale per l'illuminazione artificiale esterna

Q_{iii} Fabbisogno di energia elettrica totale

 $Q_{\text{p,ill}}$ Fabbisogno di energia primaria per il servizio illuminazione

FABBISOGNI ILLUMINAZIONE COMPLESSIVI

Fabbisogni per il servizio illuminazione di ogni zona

Zona	Qill,int,a [kWhel]	Q _{ill,int,p} [kWh _{el}]	Qill,int,u [kWhel]	Qill,int [kWhel]	Q _{ill,est} [kWh _{el}]	Qiii [kWhel]	Q _{p,ill} [kWh]
1 - Circolo	1913	1292	0	3206	0	3206	6251
TOTALI	1913	1292	0	3206	0	3206	6251

Legenda simboli

Q _{III,int,a} Fabbisogno di energia elettrica per l'illuminazione artificiale dei locali climatizzati	t,a F	di energia elettrica per l'illuminazione artificiale dei locali climatiz	zati
--	-------	--	------

 $Q_{ill,int,p}$ Fabbisogno di energia elettrica per dispositivi di controllo e di emergenza

Q_{ili,int,u} Fabbisogno di energia elettrica per l'illuminazione artificiale dei locali non climatizzati

 $\begin{array}{ll} Q_{ill,int} & \quad & \text{Fabbisogno di energia elettrica totale per l'illuminazione artificiale interna} \\ Q_{ill,est} & \quad & \text{Fabbisogno di energia elettrica totale per l'illuminazione artificiale esterna} \end{array}$

 Q_{III} Fabbisogno di energia elettrica totale

 $Q_{\text{p,ill}}$ Fabbisogno di energia primaria per il servizio illuminazione

FABBISOGNI E CONSUMI TOTALI

Edificio : IMPIANTO SPORTIVO FRAZIONE RICCA	DPR 412/93	E.4 (3)	Superficie utile	215,40	m ²
FRAZIONE RICCA					

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	5008	2213	7222	23,25	10,27	33,53
Acqua calda sanitaria	301	<i>550</i>	851	1,40	2,55	3,95
Illuminazione	1567	2780	4347	7,27	12,91	20,18
TOTALE	6876	5543	12419	31,92	25,73	57,66

Vettori energetici ed emissioni di CO2

Vettore energetico	Consumo	U.M.	CO ₂ [kg/anno]	Servizi
Energia elettrica	3526	kWhel/anno	1622	Riscaldamento, Acqua calda sanitaria, Illuminazione

Zona 1 : Circolo	DPR 412/93	E.4 (3)	Superficie utile	215,40	m ²	1
------------------	------------	---------	------------------	--------	----------------	---

Fabbisogno di energia primaria e indici di prestazione

Servizio	Qp,nren [kWh]	Qp,ren [kWh]	Qp,tot [kWh]	EP,nren [kWh/m²]	EP,ren [kWh/m²]	EP,tot [kWh/m²]
Riscaldamento	5008	2213	<i>7222</i>	23,25	10,27	33,53
Acqua calda sanitaria	301	<i>550</i>	851	1,40	2,55	3,95
Illuminazione	1567	2780	4347	7,27	12,91	20,18
TOTALE	6876	<i>5543</i>	12419	31,92	25,73	57,66

Vettori energetici ed emissioni di CO2

Vettore energetico	Consumo	U.M.	CO₂ [kg/anno]	Servizi
Energia elettrica	3526	kWhel/anno	1622	Riscaldamento, Acqua calda sanitaria, Illuminazione

PANNELLI SOLARI FOTOVOLTAICI

Zona 1 : Circolo

Energia elettrica da produzione fotovoltaica **6881** kWh/anno Fabbisogno elettrico totale dell'impianto **7412** kWh/anno Percentuale di copertura del fabbisogno annuo **52,4** %

Energia elettrica da rete 3526 kWh/anno Energia elettrica prodotta e non consumata 2996 kWh/anno

Energia elettrica mensile dell'impianto fotovoltaico (E_{el,pv,out})

Mese	E _{el,pv,out} [kWh]
Gennaio	247
Febbraio	435
Marzo	567
Aprile	692
Maggio	824
Giugno	843
Luglio	963
Agosto	813
Settembre	643
Ottobre	471
Novembre	185
Dicembre	198
TOTALI	6881

Descrizione sottocampo: Campo fotovoltaico

Modulo utilizzato SUNERG Solar Energy/X-MAX/X-MAX 300

Numero di moduli 20
Potenza di picco totale 6000 Wp
Superficie utile totale 29,20 m²

<u>Dati del singolo modulo</u>

Potenza di picco W_{pv} 300 W_p Superficie utile A_{pv} 1,46 m^2 Fattore di efficienza f_{pv} 0,75 - Efficienza nominale 0,21 -

Dati posizionamento pannelli

Orientamento rispetto al sud γ -45,0 ° Inclinazione rispetto al piano orizzontale β 22,0 ° Coefficiente di riflettenza (albedo) 0,04

Ombreggiamento (nessuno)

Energia elettrica mensile prodotta dal sottocampo

Mese	E _{pv} [kWh/m²]	E _{el,pv,out} [kWh]
gennaio	55,0	247
febbraio	96,7	435
marzo	126,0	567
aprile	153,8	692
maggio	183,1	824
giugno	187,4	843
luglio	214,1	963
agosto	180,6	813
settembre	142,8	643
ottobre	104,7	471
novembre	41,1	185
dicembre	44,0	198
TOTALI	1529,2	6881

 E_{pv} Irradiazione solare mensile incidente sull'impianto fotovoltaico

Energia elettrica mensile prodotta dal sottocampo