

www.studiogirolametti.i Via Acqui,13/A 12051 Alba (CN)

Cel +39 **348 51 39 182** T/F +39 **0173 36 50 27** e-mail: info@studiogirolametti.it P.IVA/C.F. 03493900041

COMUNE DI DIANO D'ALBA Provincia di Cuneo

BANDO TRIENNALE 2015-16-17 EDILIZIA SCOLASTICA - MUTUI

Ristrutturazione e riqualificazione di scuola dell'infanzia sita in Fraz. Valle Talloria - Diano d'Alba (CN)

PROGETTO ESECUTIVO

OGGETTO: RELAZIONE ENERGETICA - STATO DI FATTO

DATA: GENNAIO 2018 ALLEGATO: **G**

IL COMMITTENTE: COMUNE DI DIANO D'ALBA

Via Umberto I, 22 12055 Diano d'Alba (CN)

I PROGETTISTI: Geom. Fabio GIROLAMETTI

Studio Girolametti S.r.I., Via Acqui n.13/A - Alba

IL CAPOGRUPPO

Ing. Roberto FAVA

Studio Girolametti S.r.I., Via Acqui n.13/A - Alba

Sistema encuper di eventicazione in caeray management

Fabio Girolametti Senore CITLE fn. 0032-SC-EGE-2016

ORDINE DEGLI INGEGNERI SELAPRIVINCIA DI CILNEO PLOCEL Ing. Hoberto Fava

Sommario

1. INFORMAZIONI GENERALI	3
2. FATTORI TIPOLOGICI DELL'EDIFICIO	3
3. PARAMETRI CLIMATICI DELLA LOCALITÀ	4
4. DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO E DELLE RELATIVE STRUTTURE	4
5. DATI RELATIVI AGLI IMPIANTI	5
5.1 IMPIANTI TERMICI	5
5.2 IMPIANTI FOTOVOLTAICI	8
6. PRINCIPALI RISULTATI DEI CALCOLI	g
7. EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE	11
8. VALUTAZIONI PER L'UTILIZZO DELLE FONTI DI ENERGIA RINNOVABILE	11
9. DOCUMENTAZIONE ALLEGATA	11
10. DICHIARAZIONE DI RISPONDENZA	11
11. PROGETTO DELL'ISOLAMENTO	12
11.1 COEFFICIENTI DI DISPERSIONE	12
11.2 DISPERSIONI PER TRASMISSIONE	13
11.3 ATTRIBUZIONE DEI PONTI TERMICI AGLI ELEMENTI OPACHI DI INVOLUCRO	20
11.4 DISPERSIONI PER VENTILAZIONE	2 3
11.5 POTENZA TERMICA DI RIPRESA	24
11.6 DISPERSIONI DI PROGETTO E CARICO TERMICO TOTALE	25
11.7 STRUTTURE OPACHE	26
11.8 STRUTTURE TRASPARENTI	78
12. TARGA ENERGETICA	89

Cel +39 **348 51 39 182** T/F +39 **0173 36 50 27** e-mail: info@studiogirolametti.it P.IVA/C.F. 03493900041

La presente relazione tecnica è redatta con riferimento a: D.P.R. n° 412 del 26 agosto 1993, D.P.R. n°551 del dicembre 1999, Decreto Legislativo n° 192 del 19 agosto 2005, Decreto Legislativo n° 311 del 29 dicembre 2006, D.P.R. n° 59 del 2 aprile 2009, Aggiornamento del Piano regionale per il risanamento e la tutela della qualità dell'aria: stralcio di piano per il riscaldamento ambientale e il condizionamento, UNI TS 11300 parti 1, 2 e 4. D.G.R. Regione Piemonte n° 46-11968 del 4 agosto 2009.

1. INFORMAZIONI GENERALI

Progetto per la realizzazione di: riqualificazione della scuola dell'infanzia di Valle Talloria, nel comune di Diano d'Alba (CN) sito in Piazza Don Giuseppe Sarotti, 9

Dati catastali	
Unità immobiliare 1	Foglio: 5 Particella: 19 Subalterno: -

Tipologia di intervento: Ristrutturazione parziale

Tipologia costruttiva: struttura portante a telaio in c.a. e muratura di tamponamento a cassa vuota

Configurazione dell'edificio: Singola unità termoautonoma

Numero delle unità presenti: 1

Classificazione dell'edificio o del complesso di edifici (Art. 3 del DPR 412/93):

E.7. - attività scolastiche a tutti i livelli e assimilabili

Proprietario 1: Comune di Diano d'Alba

Progettista architettonico: Studio Girolametti Srl

Progettista degli impianti termici: Studio Girolametti Srl

Direttore dei lavori per l'isolamento dell'edificio: Studio Girolametti Srl

Direttore dei lavori per la realizzazione degli impianti termici: Studio Girolametti Srl

[X] L'edificio rientra tra quelli di proprietà pubblica o adibiti ad uso pubblico ai fini dell'articolo 5, comma 15, del DPR n. 412/93 (utilizzo delle fonti rinnovabili di energia) e dell'articolo 4, comma 15 del D.P.R. n° 59 del 2 aprile 2009.

2. FATTORI TIPOLOGICI DELL'EDIFICIO

Gli elementi tipologici forniti, al solo scopo di supportare la presente relazione tecnica, sono i seguenti:

- [x] Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali
- [x] Prospetti e sezioni degli edifici con evidenziazione dei sistemi di protezione solare
- [] Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari

3. PARAMETRI CLIMATICI DELLA LOCALITÀ

Comune: Diano d`Alba (CN)	Gradi giorno determinati in base al DPR 412/93: 2930		
Zona climatica: E	Altitudine: 496 m		
Latitudine: 44°39'	Longitudine: 8°1'		

Temperatura invernale minima di progetto dell'aria esterna: -10,1 °C

La temperatura minima dell'aria esterna è determinata in base alla UNI 5364:1976.

Temperatura massima estiva di progetto: 30,0 °C Escursione termica nel giorno più caldo dell'anno: 11,0 °C

Irradianza media giornaliera sul piano orizzontale nel mese di massima insolazione: 248,84 W/m²

Umidità relativa dell'aria di progetto per la climatizzazione estiva: 74,5 %

4. DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO E DELLE RELATIVE STRUTTURE

	S	V	S/V	S _U
	m ²	m ³	m ⁻¹	m ²
Unità immobiliare 1	1.171,3	1.625,9	0,72	290,21

- S superficie esterna che delimita il volume a temperatura controllata o climatizzato
- volume delle parti di edificio a temperatura controllata o climatizzate al lordo delle strutture che lo delimitano
- S/V rapporto tra superficie disperdente e volume lordi o fattore di forma dell'edificio
- Su superficie utile dell'edificio

		Tinv	Ψinv	Test	Ψest
	Zona	°C	%	°C	%
Unità immobiliare 1	scuola	20,0	50	26,0	50

valore di progetto della temperatura interna per la climatizzazione invernale o il riscaldamento Tinv

valore di progetto dell'umidità relativa interna per la climatizzazione invernale φίην

valore di progetto della temperatura interna per la climatizzazione estiva o il raffrescamento Test

valore di progetto dell'umidità relativa interna per la climatizzazione estiva *φ*est

5. DATI RELATIVI AGLI IMPIANTI

IMPIANTI TERMICI

Unità immobiliare 1

a) Descrizione impianto

Tipologia:

Impianto termico per riscaldamento degli ambienti e per la produzione di acqua calda sanitaria.

Sistemi di generazione:

Generatore di calore a condensazione ad acqua calda alimentato a metano.

Sistemi di termoregolazione:

REGOLAZIONE CLIMATICA + ZONA PER SINGOLA UNITA` IMMOBILIARE Sistema di termoregolazione climatica per singola unità immobiliare, pilotato dalla temperatura esterna ed operante sulla temperatura dell'acqua in uscita dal generatore di calore. Il sistema è inoltre pilotato dalla temperatura media rilevata da sonda di temperatura posta nella zona riscaldata e dotato di programmatore, che consente l'accensione e lo spegnimento automatico e la regolazione della temperatura media degli ambienti su due livelli nell'arco delle 24 ore.

Sistemi di contabilizzazione dell'energia termica:

Contabilizzazione unica per singola unità immobiliare.

Sistemi di distribuzione del vettore termico:

Impianto con distribuzione a colonne montanti a circolazione forzata.

Sistemi di ventilazione forzata:

Non è presente alcun sistema di ventilazione meccanica controllata. La ventilazione avviene naturalmente.

Sistemi di accumulo termico:

Non è presente alcun serbatoio di accumulo termico.

Sistemi di produzione dell'acqua calda sanitaria:

Bollitore elettrico ad accumulo e bollitori elettrici istantanei.

Sistemi di distribuzione dell'acqua calda sanitaria:

Impianto termoautonomo a distribuzione orizzontale con tubazioni in acciaio o plastica sino ai singoli punti utenza.

Durezza dell'acqua di alimentazione dei generatori di calore:

b) Specifiche dei generatori di energia

Generatore: Generatore a gas o combustibile fossile

Categoria: Generatore a gas o combustibile fossile

Modello e marca: Viessmann Vitodens 200 WB2

Utilizzo: Solo riscaldamento

Posizione e installazione: Generatore installato all'esterno dell'ambiente riscaldato.

Materiale e peso: - kg

Tipo e Classificazione: Generatore di calore a gas a condensazione ****(4 stelle)

www.studiogirolametti.it Via Acqui,13/A

12051 Alba (CN)

Cel +39 **348 51 39 182** F/F +39 **0173 36 50 27** e-mail: info@studiogirolametti.it P.IVA/C.F. 03493900041

Fluido termovettore: Acqua Combustibile utilizzato: Metano (Piemonte)

POTENZE E RENDIMENTI

Carico nominale

Potenza termica utile: 32,0 kW

Rendimento termico utile al 100%: 104,0 % Valore minimo di legge: - %

Solo per caldaie a condensazione:

Temp. di mandata di progetto: 80,0 °C

Temp. di ritorno di progetto: 60,0 °C

Generatore: Generatore a energia elettrica

Categoria: Generatore a energia elettrica: boyler istantaneo

Modello e marca:

Utilizzo: Acqua calda sanitaria

Materiale e peso: - kg

Combustibile utilizzato: Energia elettrica (Piemonte)

POTENZE E RENDIMENTI Carico nominale Potenza termica utile: 2,7 kW Rendimento termico utile al 100%: 100,0 %

Generatore: Generatore a energia elettrica

Categoria: Generatore a energia elettrica: boyler ad accumulo

Modello e marca:

Utilizzo: Acqua calda sanitaria

Materiale e peso: - kg

Combustibile utilizzato: Energia elettrica (Piemonte)

POTENZE E RENDIMENTI	
Carico nominale	
Potenza termica utile: 2,4 kW	
Rendimento termico utile al 100%: 75,0 %	

c) Descrizione impianto

Tipo di co	induzione prevista:		
	Continua con attenuazione notturna	Χ	Intermittente
Sistema d	i telegestione dell'impianto termico:		

Assente.

Sistema di regolazione climatica per generatore di calore:

Centralina di termoregolazione:

Centralina climatica di regolazione pilotata da sonda che misura la temperatura esterna ed operante sulla temperatura dell'acqua in uscita dal generatore di calore.

Numero dei livelli di programmazione della temperatura nelle 24 ore: 2

Organi di attuazione:

Valvola a 3 vie o 4 vie servoazionata per la regolazione della temperatura dell'acqua di mandata.

Potenza elettrica complessivamente assorbita: - W

Regolatori climatici delle singole zone o unità immobiliari:

Numero di apparecchi: 1

Cronotermostato ambiente programmabile per ogni giorno della settimana.

Numero dei livelli di programmazione della temperatura nelle 24 ore: 2

Potenza elettrica complessivamente assorbita: - W

Dispositivi per la regolazione automatica della temperatura ambiente nei singoli locali o nelle singole zone, ciascuna avente caratteristiche di uso ed esposizioni uniformi:

Numero di totale di apparecchi: 1

Cronotermostato ambiente programmabile per ogni giorno della settimana.

Potenza elettrica complessivamente assorbita: - W

Di seguito si riporta la tipologia di regolazione prevista per ogni zona termica del Unità immobiliare 1

Zona	Tipo regolazione	Caratteristiche	$\eta_{ m rg}$
scuola	Zona + climatica	P banda prop. 1 °C	0,97

d) Dispositivi per la contabilizzazione del calore nelle singole unità immobiliari

Numero di totale di apparecchi: 1

Contatore di calore autonomo unico.

Potenza elettrica complessivamente assorbita: -

e) Terminali di erogazione dell'energia termica

Numero di totale di apparecchi: -

Di seguito si riportano le tipologie di terminali di erogazione di calore previsti per ogni zona termica del Unità immobiliare 1

Zona	Tipologia di terminale di emissione	We	ηe	Ф _{e,des}
scuola	Radiatori in ghisa	0	0,89	59.698,45

f) Condotti di evacuazione dei prodotti della combustione

Descrizione e caratteristiche principali:

Condotto di evacuazione fumi di forma circolare in acciaio del tipo a doppia parete con isolamento.

g) Sistemi di trattamento dell'acqua

h) Specifiche dell'isolamento termico della rete di distribuzione

Impianto di distribuzione esistente.

i) Specifiche sulle pompe di circolazione

Pompe di calore esistenti.

j) Impianti solari termici

Non è presente alcun impianto solare termico.

5.2 IMPIANTI FOTOVOLTAICI

GIROLAMETTI S.r.l.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

Unità immobiliare 1

Non è presente alcun impianto solare fotovoltaico.

a) Involucro edilizio e ricambi d'aria

Caratteristiche termiche, igrometriche e di massa superficiale dei componenti opachi dell'involucro edilizio; confronto con i valori limite: (vedi allegati alla presente relazione tecnica).

Caratteristiche termiche dei componenti finestrati dell'involucro edilizio; confronto con i valori limite: (vedi allegati alla relazione tecnica).

Classe di permeabilità all'aria dei serramenti esterni: (vedi allegati alla relazione tecnica).

Valutazione dell'efficacia dei sistemi schermanti delle superfici vetrate e confronto con i valori limite.

Identificazione, calcolo e attribuzione dei ponti termici ai componenti opachi dell'involucro edilizio: (vedi allegati alla relazione tecnica).

Attenuazione dei ponti termici (provvedimenti e calcoli).

Trasmittanza termica degli elementi divisori tra alloggi o unità immobiliari confinanti; confronto con i valori limite: (vedi allegati alla relazione tecnica).

Verifica termoigrometrica: (vedi allegati alla relazione tecnica).

Numero di ricambi d'aria (media nelle 24 ore): (vedi allegati alla relazione tecnica).

Portata d'aria di ricambio solo nei casi di ventilazione meccanica controllata: (vedi allegati alla relazione tecnica).

Portata d'aria circolante attraverso apparecchiature di recupero termico o entalpico: (vedi allegati alla relazione tecnica).

Rendimento termico delle apparecchiature di recupero termico o entalpico: (vedi allegati alla relazione tecnica).

Unità immobiliare 1

b) Valore dei rendimenti medi stagionali di progetto

Rendimento di emissione ηge:	89,3 %
Rendimento di regolazione ηgrg:	97,0 %
Rendimento di distribuzione ηgd:	94,0 %
Rendimento di accumulo ηgs:	100,0 %
Rendimento di produzione ηggn:	99,3 %
Rendimento medio globale stagionale ηg:	80,9 %
Rendimento medio globale stagionale minima ηg,min:	- %

c) Indice di prestazione energetica per la climatizzazione invernale

Valore di progetto invernale EPi: 102,99 kWh/m3anno Valore limite invernale EPilimite: 25,75 kWh/m3anno

Fabbisogni di combustibile

	Energia fornita	Fattore di	Energia	Potere	Fabbisogno
		conversione	richiesta	calorifico	combustibile
Vettore energetico	Q _{del}	fp,nren	Q _{p,nren}	P.C.I.	
	[kWh]	[-]	[kWh]		
Gas naturale	166.322,99	1,00	166.322,99	9,94 kWh/m3	0,00 m3
Gasolio	0,00	1,00	0,00	11,87 kWh/kg	0,00 kg
GPL	0,00	1,00	0,00	12,81 kWh/kg	0,00 kg
Olio combustibile	0,00	1,00	0,00	11,41 kWh/kg	0,00 kg
Biomasse solide, liquide o gassose	0,00	0,30	0,00	4,90 kWh/kg	0,00 kg
Energia termica da rete (teleriscaldamento)	0,00	1,00	0,00	0,00	0,00

Fabbisogni di energia elettrica

	Energia fornita	Fattore di conversione	Energia primaria
Vettore energetico	Qdel	fp,nren	Qp,nren
	[kWh _e]	[-]	[kWh]
Energia elettrica da rete	520,07	2,17	1.130,63
Energia elettrica prodotta localmente e utilizzata	0,00	2,17	0,00
Energia elettrica prodotta localmente e reimmessa in rete	0,00	0,00	0,00

d) Indice di prestazione energetica normalizzato per la climatizzazione invernale

Valore di progetto FEN: 126,54 kJ/m3GG

e) indice di prestazione energetica per la produzione di acqua calda sanitaria

Valore di progetto EPacs: 4,39 kWh/m3anno

Fabbisogni di combustibile

	Energie femite	Fattore di	Energia	Potere	Fabbisogno
	Energia fornita	conversione	richiesta	calorifico	combustibile
Vettore energetico	Qdel	fp,nren	Qp,nren	P.C.I.	
	[kWh]	[-]	[kWh]		
Gas naturale	0,00	1,00	0,00	9,94 kWh/m3	0,00 m3
Gasolio	0,00	1,00	0,00	11,87 kWh/kg	0,00 kg
GPL	0,00	1,00	0,00	12,81 kWh/kg	0,00 kg
Olio combustibile	0,00	1,00	0,00	11,41 kWh/kg	0,00 kg
Biomasse solide, liquide o gassose	0,00	0,30	0,00	4,90 kWh/kg	0,00 kg
Energia termica da rete (teleriscaldamento)	0,00	1,00	0,00	0,00	0,00

Fabbisogni di energia elettrica

	Energia fornita	Fattore di conversione	Energia primaria
Vettore energetico	Qdel	fp,nren	Qp,nren
	[kWh _e]	[-]	[kWh]
Energia elettrica da rete	3.280,86	2,17	7.132,58
Energia elettrica prodotta localmente e utilizzata	0,00	2,17	0,00
Energia elettrica prodotta localmente e reimmessa in rete	0,00	0,00	0,00

f) Impianti a fonte rinnovabile per la produzione di acqua calda sanitaria

Percentuale di copertura del fabbisogno annuo: 0,0 % Valore minimo di legge: - %

g) Impianti fotovoltaici

Percentuale di copertura del fabbisogno annuo: 0,00 %

h) Indice di prestazione termica per la climatizzazione estiva o il raffrescamento

Valore di progetto estivo EPe: 0,00 kWh/m3anno Valore limite estivo EPelimite: 10,00 kWh/m3anno

i) Verifiche fonti rinnovabili (D.Lgs. 28 del 3 marzo 2011)

Valore limite di riferimento EPcorretto: 12,88 Copertura percentuale dei consumi previsti da fonte rinnovabile: 0,00 % Copertura percentuale minima: - % Potenza installata per produzione energia elettrica da fonte rinnovabile 0,00 kW - kW Potenza minima richiesta

7. EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE

La presente relazione considera lo stato di fatto e pertanto non si richiedono verifiche secondo normativa.

8. VALUTAZIONI PER L'UTILIZZO DELLE FONTI DI ENERGIA RINNOVABILE

La presente relazione considera lo stato di fatto e pertanto non si richiedono verifiche secondo normativa.

9. DOCUMENTAZIONE ALLEGATA

12 tabelle con indicazione delle caratteristiche termiche, termoigrometriche e massa efficace dei componenti opachi dell'involucro edilizio.

7 tabelle con indicazione delle caratteristiche termiche dei componenti finestrati dell'involucro edilizio e loro permeabilità all'aria.

10. DICHIARAZIONE DI RISPONDENZA

Il sottoscritto Geom. Fabio Girolametti, EGE Secem n.0032-SC-EGE- 2016, essendo a conoscenza delle sanzioni previste dalla normativa nazionale e regionale,

DICHIARA

sotto la propria personale responsabilità che:

- a) il progetto relativo alle opere di cui sopra è rispondente alle prescrizioni contenute nel D.Lgs 19/08/2005, n. 192 come modificato dal D.Lgs 29/12/2006, n.311 (rec. Direttiva 2002/91/CE), al D.Lgs 30/05/2008 n. 115, al D.P.R 2/04/2009 n. 59 e al decreto legge 4 giugno 2013 n. 63 coordinato con la legge di conversione 3 agosto 2013 n. 90, e dalla D.G.R. 4/08/2009 n. 46-11968 (aggiornamento dello Stralcio di piano alla luce della L.R. 13/2007);
- b) i dati e le informazioni contenuti nella relazione tecnica sono conformi a quanto contenuto o desumibile dagli elaborati progettuali.

Data Firma

Gennaio 2018

Tho

36

11. PROGETTO DELL'ISOLAMENTO

Il calcolo di progetto per l'isolamento dell'involucro dell'edificio ed il conseguente calcolo del carico termico di progetto è condotto in conformità alla UNI EN 12381 – 2006.

11.1 COEFFICIENTI DI DISPERSIONE

Di seguito si riportano gli elementi che costituiscono l'involucro del sistema edificio/impianto con i rispettivi valori di trasmittanza termica U. U' rappresenta la trasmittanza di un elemento opaco valutata comprendendo l'influenza degli eventuali ponti termici associati. A ciascuna voce viene associato il limite da normativa e l'esito della relativa verifica.

Strutture verticali opache	Trasmittanza U	Trasmittanza corretta U'	Trasmittanza limite Ulimite	Verifica
	W/(m ² K)	W/(m ² K)	$W/(m^2K)$	
Porta esterna non isolata	2,012	2,012	1,800	NO
M01_Parete vs esterno (Esistente)	1,103	2,086	0,386	NO
M03_Parete vs esterno in c.a. sp.60	2,340	2,340	0,386	NO
M04_Sottofinestra esistente	1,953	10,871	0,386	NO
Cassonetto esistente	1,235	21,301	0,386	NO
M03_Parete vs esterno in c.a. sp.80	1,971	1,971	0,386	NO
M01_Parete vs esterno da ZNR (Esistente)	1,146	1,146	0,386	NO

Strutture orizzontali opache di pavimento	Trasmittanza U	Trasmittanza corretta U'	Trasmittanza limite Ulimite	Verifica
	W/(m ² K)	W/(m ² K)	W/(m ² K)	
P01_Pavimento controterra	1,826	1,826	0,351	NO
P02_Pavimento vs interrato esistente	1,292	1,292	0,800	NO
P04_Pavimento vs sottotetto esistente	1,889	1,889	0,800	NO

Strutture orizzontali opache di copertura	Trasmittanza U	Trasmittanza corretta U'		
	W/(m ² K)	W/(m ² K)	$W/(m^2K)$	
C02_Copertura esistente	6,588	6,588	0,351	NO

Elementi trasparenti	Trasmittanza U	Trasmittanza limite Ulimite	Verifica
	W/(m ² K)	$W/(m^2K)$	
Vetro 4-10-4	1,728	1,989	OK
Vetro singolo 4 mm	5,746	1,989	NO

Serramenti	Trasmittanza U W/(m ² K)	Trasmittanza limite Ulimite W/(m ² K)	Verifica
Serramento 137x205 esistente	3,000	1,800	NO
Serramento 60x205 esistente	3,000	1,800	NO
Serramento 60x240 esistente	3,000	1,800	NO
Serramento 100x40 esistente	6,000	1,800	NO
Serramento 120x240 esistente	3,000	1,800	NO

Partizioni interne verticali ed orizzontali	Trasmittanza U	Trasmittanza corretta U'	Trasmittanza limite Ulimite	Verifica
	W/(m ² K)	$W/(m^2K)$	W/(m ² K)	
M06_tramezzo c.a. sp.60 vs ZNR	2,218	2,218	0,800	NO

Ponti termici	Trasmittanza lineica ψi W/(mK)	Trasmittanza lineica ψοί W/(mK)	Trasmittanza lineica ψe W/(mK)
pilastro	0,520	0,520	0,520
pilastro angolo	0,581	0,581	-0,578
solaio interpiano	0,680	68,000	0,433

solaio su interrato	-0,358	-0,358	-0,715
solaio su terreno	1,503	1,503	1,146
solaio vs sottotetto	-0,077	-0,077	-2,460

11.2 DISPERSIONI PER TRASMISSIONE

I coefficienti di maggiorazione percentuale a seconda dell'esposizione delle strutture verticali sono valutati con riferimento alla norma UNI EN 12831 - 2006, paragrafo 6 dell'appendice NA (prospetto NA.3 a).

Unità immobiliare 1

scuola - Aula 3 - Δθprogetto = 30,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0001	M01_Parete vs esterno (Esistente)	Esterno	N W	1,15	24,53	1,103	27,04	1,00	31,10	936,09
pa0014	M06_tramezzo c.a. sp.50	Locale interno alla zona	-	1,00	55,02	2,455	135,08	0,00	0,00	0,00
pa0042	M06_tramezzo c.a. sp.50	Locale interno alla zona	-	1,00	16,87	2,455	41,43	0,00	0,00	0,00
pt0003	pilastro	Esterno	-	1,00	4,10	0,520	2,13	1,00	2,13	64,15
pa0015	M07_tramezzo c.a. sp.40	Locale interno alla zona	-	1,00	22,38	2,749	61,50	0,00	0,00	0,00
pa0024	M01_Parete vs esterno (Esistente)	Esterno	S W	1,05	18,44	1,103	20,34	1,00	21,35	642,76
se0005	Serramento 137x205 esistente	Esterno	S W	1,05	2,81	2,420	6,80	1,00	7,14	214,81
pa0047	M04_Sottofinestra esistente	Esterno	S W	1,05	1,23	1,953	2,41	1,00	2,53	76,10
pa0048	Cassonetto esistente	Esterno	S W	1,05	0,55	1,235	0,68	1,00	0,71	21,39
se0006	Serramento 137x205 esistente	Esterno	S W	1,05	2,81	2,420	6,80	1,00	7,14	214,81
pa0049	M04_Sottofinestra esistente	Esterno	S W	1,05	1,23	1,953	2,41	1,00	2,53	76,10
pa0050	Cassonetto esistente	Esterno	S W	1,05	0,55	1,235	0,68	1,00	0,71	21,39
se0007	Serramento 137x205 esistente	Esterno	S W	1,05	2,81	2,420	6,80	1,00	7,14	214,81
pa0051	M04_Sottofinestra esistente	Esterno	S W	1,05	1,23	1,953	2,41	1,00	2,53	76,10
pa0052	Cassonetto esistente	Esterno	S W	1,05	0,55	1,235	0,68	1,00	0,71	21,39
se0008	Serramento 137x205 esistente	Esterno	S W	1,05	2,81	2,420	6,80	1,00	7,14	214,81
pa0053	M04_Sottofinestra esistente	Esterno	S W	1,05	1,23	1,953	2,41	1,00	2,53	76,10
pa0054	Cassonetto esistente	Esterno	S W	1,05	0,55	1,235	0,68	1,00	0,71	21,39
pt0004	pilastro	Esterno	-	1,00	4,10	0,520	2,13	1,00	2,13	64,15
so0001	P04_Pavimento vs sottotetto esistente	sottotetto 1	-	1,00	52,65	1,889	99,47	0,90	89,52	2.694,58
pv0001	P02_Pavimento vs interrato esistente	interrato	-	1,00	52,65	1,292	68,03	0,80	54,43	1.638,28

TOTALE scuola - Aula 3	242,16	7.289,16
------------------------	--------	----------

scuola - Cucina 1 - Δθprogetto = 30,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0002	M01_Parete vs esterno (Esistente)	Esterno	NE	1,20	9,85	1,103	10,86	1,00	13,04	392,40
se0009	Serramento 137x205 esistente	Esterno	NE	1,20	2,81	2,420	6,80	1,00	8,16	245,49
pa0055	M04_Sottofinestra esistente	Esterno	NE	1,20	1,23	1,953	2,41	1,00	2,89	86,97
pa0056	Cassonetto esistente	Esterno	NE	1,20	0,55	1,235	0,68	1,00	0,81	24,44

se0010	Serramento 137x205 esistente	Esterno	NE	1,20	2,81	2,420	6,80	1,00	8,16	245,49
pa0057	M04_Sottofinestra esistente	Esterno	NE	1,20	1,23	1,953	2,41	1,00	2,89	86,97
pa0058	Cassonetto esistente	Esterno	NE	1,20	0,55	1,235	0,68	1,00	0,81	24,44
pa0012	M01_Parete vs esterno (Esistente)	Esterno	N W	1,15	16,08	1,103	17,73	1,00	20,39	613,78
pa0041	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	11,81	2,509	29,62	0,00	0,00	0,00
so0001	P04_Pavimento vs sottotetto esistente	sottotetto 1	-	1,00	15,97	1,889	30,17	0,90	27,15	817,27
pv0001	P02_Pavimento vs interrato esistente	interrato	-	1,00	15,97	1,292	20,64	0,80	16,51	496,89

TOTALE scuola - Cucina 1 100,80 3.034,14

scuola - Aula 2 - Δθprogetto = 30,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0010	M01_Parete vs esterno (Esistente)	Esterno	S W	1,05	21,34	1,103	23,53	1,00	24,70	743,60
se0001	Serramento 137x205 esistente	Esterno	S W	1,05	2,81	2,420	6,80	1,00	7,14	214,81
pa0059	M04_Sottofinestra esistente	Esterno	S W	1,05	1,23	1,953	2,41	1,00	2,53	76,10
pa0060	Cassonetto esistente	Esterno	S W	1,05	0,55	1,235	0,68	1,00	0,71	21,39
se0002	Serramento 137x205 esistente	Esterno	S W	1,05	2,81	2,420	6,80	1,00	7,14	214,81
pa0061	M04_Sottofinestra esistente	Esterno	S W	1,05	1,23	1,953	2,41	1,00	2,53	76,10
pa0062	Cassonetto esistente	Esterno	S W	1,05	0,55	1,235	0,68	1,00	0,71	21,39
se0004	Serramento 137x205 esistente	Esterno	S W	1,05	2,81	2,420	6,80	1,00	7,14	214,81
pa0063	M04_Sottofinestra esistente	Esterno	S W	1,05	1,23	1,953	2,41	1,00	2,53	76,10
pa0064	Cassonetto esistente	Esterno	S W	1,05	0,55	1,235	0,68	1,00	0,71	21,39
pa0018	M06_tramezzo c.a. sp.60 vs ZNR	Vano scale PT	-	1,00	22,37	2,218	49,63	0,40	19,85	597,58
pt0002	pilastro	Esterno	-	1,00	3,41	0,520	1,77	1,00	1,77	53,35
so0001	P04_Pavimento vs sottotetto esistente	sottotetto 1	-	1,00	55,62	1,889	105,08	0,90	94,57	2.846,69
pv0001	P02_Pavimento vs interrato esistente	interrato	-	1,00	56,19	1,292	72,62	0,80	58,09	1.748,58

TOTALE scuola - Aula 2 230,12 6.926,68

scuola - Corridoio - Δθprogetto = 30,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0031	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	11,80	2,509	29,60	0,00	0,00	0,00
pa0032	M06_tramezzo c.a. sp.50	Locale interno alla zona	-	1,00	8,40	2,455	20,62	0,00	0,00	0,00
pa0037	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	9,25	2,509	23,20	0,00	0,00	0,00
pa0043	M01_Parete vs esterno (Esistente)	Esterno	NE	1,20	40,31	1,103	44,44	1,00	53,33	1.605,30
se0011	Serramento 137x205 esistente	Esterno	NE	1,20	2,81	2,420	6,80	1,00	8,16	245,49
pa0065	M04_Sottofinestra esistente	Esterno	NE	1,20	1,23	1,953	2,41	1,00	2,89	86,97
pa0066	Cassonetto esistente	Esterno	NE	1,20	0,55	1,235	0,68	1,00	0,81	24,44
se0012	Serramento 137x205 esistente	Esterno	NE	1,20	2,81	2,420	6,80	1,00	8,16	245,49
pa0067	M04_Sottofinestra esistente	Esterno	NE	1,20	1,23	1,953	2,41	1,00	2,89	86,97
pa0068	Cassonetto esistente	Esterno	NE	1,20	0,55	1,235	0,68	1,00	0,81	24,44
se0013	Serramento 137x205 esistente	Esterno	NE	1,20	2,81	2,420	6,80	1,00	8,16	245,49
pa0069	M04_Sottofinestra esistente	Esterno	NE	1,20	1,23	1,953	2,41	1,00	2,89	86,97
pa0070	Cassonetto esistente	Esterno	NE	1,20	0,55	1,235	0,68	1,00	0,81	24,44
se0015	Serramento 137x205 esistente	Esterno	NE	1,20	2,81	2,420	6,80	1,00	8,16	245,49
pa0071	M04_Sottofinestra esistente	Esterno	NE	1,20	1,23	1,953	2,41	1,00	2,89	86,97
pa0072	Cassonetto esistente	Esterno	NE	1,20	0,55	1,235	0,68	1,00	0,81	24,44

se0016	Serramento 137x205 esistente	Esterno	NE	1,20	2,81	2,420	6,80	1,00	8,16	245,49
pa0073	M04_Sottofinestra esistente	Esterno	NE	1,20	1,23	1,953	2,41	1,00	2,89	86,97
pa0074	Cassonetto esistente	Esterno	NE	1,20	0,55	1,235	0,68	1,00	0,81	24,44
po0003	Porta esterna non isolata	Esterno	NE	1,20	1,89	2,012	3,80	1,00	4,56	137,35
pa0017	M06_tramezzo c.a. sp.60 vs ZNR	Vano scale PT	-	1,00	10,57	2,218	23,44	0,40	9,38	282,23
pt0005	pilastro	Esterno	-	1,00	4,10	0,520	2,13	1,00	2,13	64,15
pt0006	pilastro	Esterno	-	1,00	4,10	0,520	2,13	1,00	2,13	64,15
pt0007	pilastro	Esterno	-	1,00	4,10	0,520	2,13	1,00	2,13	64,15
so0001	P04_Pavimento vs sottotetto esistente	sottotetto 1	-	1,00	48,38	1,889	91,40	0,90	82,26	2.476,00
pv0001	P02_Pavimento vs interrato esistente	interrato	-	1,00	58,17	1,292	75,17	0,80	60,13	1.810,00
pv0002	P01_Pavimento controterra	Esterno	-	1,00	19,02	1,826	34,73	1,00	34,73	1.045,42
TOTALE	scuola - Corridoio	<u>'</u>			·	·			310,08	9.333,26

scuola - Anti wc - $\Delta \vartheta$ progetto = 34,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0003	M01_Parete vs esterno (Esistente)	Esterno	N W	1,15	7,72	1,103	8,51	1,00	9,79	333,76
se0017	Serramento 60x205 esistente	Esterno	N W	1,15	1,23	2,420	2,98	1,00	3,42	116,73
pa0075	M04_Sottofinestra esistente	Esterno	N W	1,15	0,54	1,953	1,05	1,00	1,21	41,35
pa0076	Cassonetto esistente	Esterno	N W	1,15	0,24	1,235	0,30	1,00	0,34	11,62
pa0033	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	4,37	2,509	10,97	0,00	0,00	0,00
pa0035	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	4,82	2,509	12,10	0,00	0,00	0,00
pt0014	solaio su terreno	Esterno	-	1,00	2,30	1,146	2,64	1,00	2,64	89,88
pv0002	P01_Pavimento controterra	Esterno	-	1,00	3,29	1,826	6,00	1,00	6,00	204,75
TOTALE S	TOTALE scuola - Anti wc								23,40	798,09

scuola - Wc 7 - $\Delta\vartheta$ progetto = 34,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0004	M01_Parete vs esterno (Esistente)	Esterno	NE	1,20	4,95	1,103	5,46	1,00	6,56	223,53
se0018	Serramento 60x205 esistente	Esterno	NE	1,20	1,23	2,420	2,98	1,00	3,57	121,80
pa0077	M04_Sottofinestra esistente	Esterno	NE	1,20	0,54	1,953	1,05	1,00	1,27	43,15
pa0078	Cassonetto esistente	Esterno	NE	1,20	0,24	1,235	0,30	1,00	0,36	12,13
pa0034	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	5,04	2,509	12,64	0,00	0,00	0,00
pt0015	solaio su terreno	Esterno	-	1,00	1,65	1,146	1,89	1,00	1,89	64,34
pv0002	P01_Pavimento controterra	Esterno	-	1,00	2,19	1,826	4,00	1,00	4,00	136,50
TOTALE S	scuola - Wc 7								17,64	601,45

scuola - Wc 6 - $\Delta \vartheta$ progetto = 34,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0036	M01_Parete vs esterno (Esistente)	Esterno	NE	1,20	4,67	1,103	5,15	1,00	6,18	210,57
se0019	Serramento 60x205 esistente	Esterno	NE	1,20	1,23	2,420	2,98	1,00	3,57	121,80
pa0079	M04_Sottofinestra esistente	Esterno	NE	1,20	0,54	1,953	1,05	1,00	1,27	43,15
pa0080	Cassonetto esistente	Esterno	NE	1,20	0,24	1,235	0,30	1,00	0,36	12,13
se0020	Serramento 60x205 esistente	Esterno	NE	1,20	1,23	2,420	2,98	1,00	3,57	121,80
pa0081	M04_Sottofinestra esistente	Esterno	NE	1,20	0,54	1,953	1,05	1,00	1,27	43,15
pa0082	Cassonetto esistente	Esterno	NE	1,20	0,24	1,235	0,30	1,00	0,36	12,13
pa0038	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	9,73	2,509	24,42	0,00	0,00	0,00
pt0008	pilastro	Esterno	-	1,00	4,10	0,520	2,13	1,00	2,13	72,67

	TOTALE s	cuola - Wc 6								25,43	867,30
L	pv0002	P01_Pavimento controterra	Esterno	-	1,00	2,40	1,020	4,39	1,00	4,39	149,64
	pv0002	P01 Pavimento controterra	Cotorno		4.00	2.40	1.826	4.20	1.00	4.20	140.64
	pt0016	solaio su terreno	Esterno	-	1,00	2,05	1,146	2,35	1,00	2,35	80,25

scuola - Wc 5 - Δθprogetto = 34,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0029	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	11,38	2,509	28,55	0,00	0,00	0,00
pv0002	P01_Pavimento controterra	Esterno	-	1,00	1,32	1,826	2,41	1,00	2,41	82,35
TOTALE S	scuola - Wc 5								2,41	82,35

scuola - Wc 4 - $\Delta \vartheta$ progetto = 34,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0026	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	5,04	2,509	12,65	0,00	0,00	0,00
pa0030	M01_Parete vs esterno (Esistente)	Esterno	NE	1,20	2,21	1,103	2,43	1,00	2,92	99,60
se0021	Serramento 60x205 esistente	Esterno	NE	1,20	1,23	2,420	2,98	1,00	3,57	121,80
pa0083	M04_Sottofinestra esistente	Esterno	NE	1,20	0,54	1,953	1,05	1,00	1,27	43,15
pa0084	Cassonetto esistente	Esterno	NE	1,20	0,24	1,235	0,30	1,00	0,36	12,13
pt0017	solaio su terreno	Esterno	-	1,00	1,00	1,146	1,14	1,00	1,14	38,96
pv0002	P01_Pavimento controterra	Esterno	-	1,00	1,77	1,826	3,24	1,00	3,24	110,39
TOTALE	I- W- 4								40.40	400.00

TOTALE scuola - Wc 4 12,49 426,03

scuola - Wc 3 - $\Delta\vartheta$ progetto = 34,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0005	M01_Parete vs esterno (Esistente)	Esterno	SE	1,10	8,90	1,103	9,81	1,00	10,79	368,00
se0023	Serramento 137x205 esistente	Esterno	SE	1,10	2,81	2,420	6,80	1,00	7,48	254,94
pa0085	M04_Sottofinestra esistente	Esterno	SE	1,10	1,23	1,953	2,41	1,00	2,65	90,31
pa0086	Cassonetto esistente	Esterno	SE	1,10	0,55	1,235	0,68	1,00	0,74	25,38
pa0025	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	4,19	2,509	10,50	0,00	0,00	0,00
pa0028	M01_Parete vs esterno (Esistente)	Esterno	NE	1,20	4,35	1,103	4,79	1,00	5,75	196,14
se0022	Serramento 60x205 esistente	Esterno	NE	1,20	1,23	2,420	2,98	1,00	3,57	121,80
pa0087	M04_Sottofinestra esistente	Esterno	NE	1,20	0,54	1,953	1,05	1,00	1,27	43,15
pa0088	Cassonetto esistente	Esterno	NE	1,20	0,24	1,235	0,30	1,00	0,36	12,13
pt0018	solaio su terreno	Esterno	-	1,00	1,50	1,146	1,72	1,00	1,72	58,73
pt0019	solaio su terreno	Esterno	-	1,00	2,92	1,146	3,34	1,00	3,34	113,98
pv0002	P01_Pavimento controterra	Esterno	-	1,00	3,42	1,826	6,25	1,00	6,25	213,10
TOTALE 5	scuola - Wc 3								43,92	1.497,66

scuola - Anti wc 1 - $\Delta \vartheta$ progetto = 34,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0027	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	8,53	2,509	21,40	0,00	0,00	0,00
pa0039	M01_Parete vs esterno (Esistente)	Esterno	SE	1,10	7,73	1,103	8,52	1,00	9,37	319,57
se0024	Serramento 137x205 esistente	Esterno	SE	1,10	2,81	2,420	6,80	1,00	7,48	254,94
pa0089	M04_Sottofinestra esistente	Esterno	SE	1,10	1,23	1,953	2,41	1,00	2,65	90,31
pa0090	Cassonetto esistente	Esterno	SE	1,10	0,55	1,235	0,68	1,00	0,74	25,38
pa0040	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	12,67	2,509	31,78	0,00	0,00	0,00
pt0009	pilastro	Esterno	-	1,00	4,10	0,520	2,13	1,00	2,13	72,67

pt0010	pilastro	Esterno	-	1,00	4,10	0,520	2,13	1,00	2,13	72,67
pt0020	solaio su terreno	Esterno	-	1,00	2,91	1,146	3,34	1,00	3,34	113,78
pv0002	P01_Pavimento controterra	Esterno	-	1,00	4,70	1,826	8,58	1,00	8,58	292,58

36,42 1.241,91

scuola - Anti wc 2 - $\Delta \vartheta$ progetto = 34,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pv0002	P01_Pavimento controterra	Esterno	-	1,00	1,80	1,826	3,29	1,00	3,29	112,24
TOTALE s	cuola - Anti wc 2								3,29	112,24

scuola - Anti wc 3 - $\Delta\vartheta$ progetto = 34,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0011	M06_tramezzo c.a. sp.50	Locale interno alla zona	-	1,00	12,69	2,455	31,15	0,00	0,00	0,00
pv0002	P01_Pavimento controterra	Esterno	-	1,00	7,93	1,826	14,48	1,00	14,48	493,76
TOTAL F	scuola - Anti wc 3								14 48	493.76

scuola - dormitorio - Δθprogetto = 30,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0019	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	12,65	2,509	31,73	0,00	0,00	0,00
pa0021	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	13,92	2,509	34,91	0,00	0,00	0,00
pa0023	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	8,42	2,509	21,12	0,00	0,00	0,00
pa0013	M06_tramezzo c.a. sp.60 vs ZNR	Vano scale PT	-	1,00	27,49	2,218	60,98	0,40	24,39	734,25
pa0044	M01_Parete vs esterno (Esistente)	Esterno	SE	1,10	17,33	1,103	19,10	1,00	21,01	632,53
se0025	Serramento 137x205 esistente	Esterno	SE	1,10	2,81	2,420	6,80	1,00	7,48	225,03
pa0091	M04_Sottofinestra esistente	Esterno	SE	1,10	1,23	1,953	2,41	1,00	2,65	79,72
pa0092	Cassonetto esistente	Esterno	SE	1,10	0,55	1,235	0,68	1,00	0,74	22,41
se0026	Serramento 137x205 esistente	Esterno	SE	1,10	2,81	2,420	6,80	1,00	7,48	225,03
pa0093	M04_Sottofinestra esistente	Esterno	SE	1,10	1,23	1,953	2,41	1,00	2,65	79,72
pa0094	Cassonetto esistente	Esterno	SE	1,10	0,55	1,235	0,68	1,00	0,74	22,41
se0027	Serramento 137x205 esistente	Esterno	SE	1,10	2,81	2,420	6,80	1,00	7,48	225,03
pa0095	M04_Sottofinestra esistente	Esterno	SE	1,10	1,23	1,953	2,41	1,00	2,65	79,72
pa0096	Cassonetto esistente	Esterno	SE	1,10	0,55	1,235	0,68	1,00	0,74	22,41
pt0021	solaio su terreno	Esterno	-	1,00	7,35	1,146	8,42	1,00	8,42	253,57
pv0002	P01_Pavimento controterra	Esterno	-	1,00	42,74	1,826	78,03	1,00	78,03	2.348,64
TOTALE S	scuola - dormitorio								164,47	4.950,46

scuola - Ripostiglio 1 - $\Delta \vartheta$ progetto = 30,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0007	M01_Parete vs esterno (Esistente)	Esterno	N W	1,15	11,65	1,103	12,84	1,00	14,77	444,49
po0002	Porta esterna non isolata	Esterno	N W	1,15	1,89	2,012	3,80	1,00	4,37	131,63
pa0022	M01_Parete vs esterno (Esistente)	Esterno	S W	1,05	10,57	1,103	11,65	1,00	12,24	368,34
pt0012	solaio su terreno	Esterno	-	1,00	2,50	1,146	2,86	1,00	2,86	86,20
pt0013	solaio su terreno	Esterno	-	1,00	3,20	1,146	3,67	1,00	3,67	110,39
pv0002	P01_Pavimento controterra	Esterno	-	1,00	8,93	1,826	16,31	1,00	16,31	490,99

1.632,04 TOTALE scuola - Ripostiglio 1 54,22

scuola - Locale deposito - $\Delta \vartheta$ progetto = 30,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0006	M01_Parete vs esterno (Esistente)	Esterno	S W	1,05	14,81	1,103	16,33	1,00	17,15	516,09
pa0020	M01_Parete vs esterno (Esistente)	Esterno	SE	1,10	1,69	1,103	1,87	1,00	2,05	61,77
se0028	Serramento 137x205 esistente	Esterno	SE	1,10	2,81	2,420	6,80	1,00	7,48	225,03
pa0097	M04_Sottofinestra esistente	Esterno	SE	1,10	1,23	1,953	2,41	1,00	2,65	79,72
pa0098	Cassonetto esistente	Esterno	SE	1,10	0,55	1,235	0,68	1,00	0,74	22,41
pa0046	M01_Parete vs esterno (Esistente)	Esterno	SE	1,10	3,65	1,103	4,03	1,00	4,43	133,40
pt0001	pilastro	Esterno	-	1,00	4,10	0,520	2,13	1,00	2,13	64,15
pt0011	solaio su terreno	Esterno	-	1,00	3,50	1,146	4,01	1,00	4,01	120,77
pt0022	solaio su terreno	Esterno	-	1,00	2,35	1,146	2,69	1,00	2,69	81,02
pv0002	P01_Pavimento controterra	Esterno	-	1,00	8,54	1,826	15,59	1,00	15,59	469,19
TOTALE	souala I acala danacita								E9 02	1 772 57

TOTALE scuola - Locale deposito 58,92 1.773,57

scuola - Aula 5 - $\Delta\vartheta$ progetto = 30,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0001	M01_Parete vs esterno (Esistente)	Esterno	S W	1,05	23,49	1,103	25,90	1,00	27,20	818,58
po0001	Porta esterna non isolata	Esterno	S W	1,05	1,89	2,012	3,80	1,00	3,99	120,18
pa0002	M01_Parete vs esterno (Esistente)	Esterno	N W	1,15	8,95	1,103	9,86	1,00	11,34	341,46
se0002	Serramento 137x205 esistente	Esterno	N W	1,15	2,81	2,420	6,80	1,00	7,82	235,26
pa0038	M04_Sottofinestra esistente	Esterno	N W	1,15	1,23	1,953	2,41	1,00	2,77	83,34
pa0039	Cassonetto esistente	Esterno	N W	1,15	0,55	1,235	0,68	1,00	0,78	23,42
pa0014	M06_tramezzo c.a. sp.60 vs ZNR	Vano scale P1	-	1,00	3,37	2,218	7,48	0,40	2,99	90,08
pa0036	M01_Parete vs esterno (Esistente)	Esterno	SE	1,10	7,73	1,103	8,53	1,00	9,38	282,37
se0003	Serramento 137x205 esistente	Esterno	SE	1,10	2,81	2,420	6,80	1,00	7,48	225,03
pa0040	M04_Sottofinestra esistente	Esterno	SE	1,10	1,23	1,953	2,41	1,00	2,65	79,72
pa0041	Cassonetto esistente	Esterno	SE	1,10	0,55	1,235	0,68	1,00	0,74	22,41
se0004	Serramento 137x205 esistente	Esterno	SE	1,10	2,81	2,420	6,80	1,00	7,48	225,03
pa0042	M04_Sottofinestra esistente	Esterno	SE	1,10	1,23	1,953	2,41	1,00	2,65	79,72
pa0043	Cassonetto esistente	Esterno	SE	1,10	0,55	1,235	0,68	1,00	0,74	22,41
pa0027	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	23,62	2,509	59,26	0,00	0,00	0,00
pt0001	pilastro	Esterno	-	1,00	4,10	0,520	2,13	1,00	2,13	64,15
pt0010	solaio interpiano	Esterno	-	1,00	4,00	0,433	1,73	1,00	1,73	52,11
pt0011	solaio interpiano	Esterno	-	1,00	6,00	0,433	2,60	1,00	2,60	78,20
pt0012	solaio interpiano	Esterno	-	1,00	3,20	0,433	1,39	1,00	1,39	41,71
pv0001	P03_Pavimento interpiano esistente	Locale interno alla zona	-	1,00	24,35	1,292	31,47	0,00	0,00	0,00
so0001	P04_Pavimento vs sottotetto esistente	sottotetto 2	-	1,00	24,35	1,889	46,00	0,90	41,40	1.246,27

TOTALE scuola - Aula 5 137,26 4.131,46

scuola - Cucina 2 - Δθprogetto = 30,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0025	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	13,14	2,509	32,96	0,00	0,00	0,00
pa0009	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	13,93	2,509	34,95	0,00	0,00	0,00
pa0011	M01_Parete vs esterno (Esistente)	Esterno	SE	1,10	8,95	1,103	9,86	1,00	10,85	326,58

TOTALE scuola - Cucina 2									45,01	1.354,80
so0001	P04_Pavimento vs sottotetto esistente	sottotetto 2	-	1,00	12,44	1,889	23,51	0,90	21,16	636,92
pv0001	P03_Pavimento interpiano esistente	Locale interno alla zona	-	1,00	12,44	1,292	16,08	0,00	0,00	0,00
pt0002	pilastro	Esterno	-	1,00	4,10	0,520	2,13	1,00	2,13	64,15
pa0045	Cassonetto esistente	Esterno	SE	1,10	0,55	1,235	0,68	1,00	0,74	22,41
pa0044	M04_Sottofinestra esistente	Esterno	SE	1,10	1,23	1,953	2,41	1,00	2,65	79,72
se0005	Serramento 137x205 esistente	Esterno	SE	1,10	2,81	2,420	6,80	1,00	7,48	225,03

scuola - Bagni - $\Delta \vartheta$ progetto = 34,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	$[m^2]$	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0018	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	4,24	2,509	10,63	0,00	0,00	0,00
pa0020	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	4,84	2,509	12,15	0,00	0,00	0,00
pa0021	M01_Parete vs esterno (Esistente)	Esterno	SE	1,10	1,75	1,103	1,93	1,00	2,13	72,52
se0006	Serramento 137x205 esistente	Esterno	SE	1,10	2,81	2,420	6,80	1,00	7,48	254,94
pa0046	M04_Sottofinestra esistente	Esterno	SE	1,10	1,23	1,953	2,41	1,00	2,65	90,31
pa0047	Cassonetto esistente	Esterno	SE	1,10	0,55	1,235	0,68	1,00	0,74	25,38
pa0024	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	4,84	2,509	12,15	0,00	0,00	0,00
pa0026	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	4,68	2,509	11,74	0,00	0,00	0,00
pa0030	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	10,55	2,509	26,48	0,00	0,00	0,00
pv0001	P03_Pavimento interpiano esistente	Locale interno alla zona	-	1,00	6,88	1,292	8,89	0,00	0,00	0,00
so0001	P04_Pavimento vs sottotetto esistente	sottotetto 2	-	1,00	6,88	1,889	13,00	0,90	11,70	398,91
TOTALE S	scuola - Bagni								24,69	842,07

scuola - Disimpegno 2 - $\Delta \vartheta$ progetto = 30,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0016	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	5,26	2,509	13,20	0,00	0,00	0,00
pa0035	M06_tramezzo c.a. sp.60	Locale interno alla zona	-	1,00	4,01	2,218	8,91	0,00	0,00	0,00
pa0037	M06_tramezzo c.a. sp.60 vs ZNR	Vano scale P1	-	1,00	24,12	2,218	53,51	0,40	21,41	644,31
pv0001	P03_Pavimento interpiano esistente	Locale interno alla zona	-	1,00	12,96	1,292	16,75	0,00	0,00	0,00
so0001	P04_Pavimento vs sottotetto esistente	sottotetto 2	-	1,00	12,96	1,889	24,49	0,90	22,04	663,43

TOTALE scuola - Disimpegno 2 43,45 1.307,74

scuola - Aula 4 - Δθprogetto = 30,1 °C

Codice	Elemento disperdente	Verso di	Or	е	Anetta	Uοψ	Hix	btrx	Н	ΦТ
		dispersione	[-]	[%]	[m ²]	[W/(m ² K)] o [W/(mK)]	[W/K]	[-]	[W/K]	[W]
pa0005	M01_Parete vs esterno (Esistente)	Esterno	NE	1,20	8,91	1,103	9,82	1,00	11,79	354,73
se0015	Serramento 120x240 esistente	Esterno	NE	1,20	2,88	2,420	6,97	1,00	8,36	251,74
pa0048	Cassonetto esistente	Esterno	NE	1,20	0,48	1,235	0,59	1,00	0,71	21,41
pa0006	M01_Parete vs esterno (Esistente)	Esterno	N W	1,15	8,05	1,103	8,87	1,00	10,21	307,20
se0014	Serramento 60x240 esistente	Esterno	N W	1,15	1,44	2,420	3,48	1,00	4,01	120,63
pa0049	Cassonetto esistente	Esterno	N W	1,15	0,24	1,235	0,30	1,00	0,34	10,26
pa0007	M01_Parete vs esterno (Esistente)	Esterno	NE	1,20	16,18	1,103	17,84	1,00	21,40	644,23
se0009	Serramento 60x205 esistente	Esterno	NE	1,20	1,23	2,420	2,98	1,00	3,57	107,51
pa0050	M04_Sottofinestra esistente	Esterno	NE	1,20	0,54	1,953	1,05	1,00	1,27	38,09

		T.								
pa0051	Cassonetto esistente	Esterno	NE	1,20	0,24	1,235	0,30	1,00	0,36	10,70
se0010	Serramento 60x205 esistente	Esterno	NE	1,20	1,23	2,420	2,98	1,00	3,57	107,51
pa0052	M04_Sottofinestra esistente	Esterno	NE	1,20	0,54	1,953	1,05	1,00	1,27	38,09
pa0053	Cassonetto esistente Esterno		NE	1,20	0,24	1,235	0,30	1,00	0,36	10,70
se0011	Serramento 60x205 esistente	Esterno	NE	1,20	1,23	2,420	2,98	1,00	3,57	107,51
pa0054	M04_Sottofinestra esistente	Esterno	NE	1,20	0,54	1,953	1,05	1,00	1,27	38,09
pa0055	Cassonetto esistente	Esterno	NE	1,20	0,24	1,235	0,30	1,00	0,36	10,70
se0012	Serramento 60x205 esistente	Esterno	NE	1,20	1,23	2,420	2,98	1,00	3,57	107,51
pa0056	M04_Sottofinestra esistente	Esterno	NE	1,20	0,54	1,953	1,05	1,00	1,27	38,09
pa0057	Cassonetto esistente	Esterno	NE	1,20	0,24	1,235	0,30	1,00	0,36	10,70
se0013	Serramento 60x205 esistente	Esterno	NE	1,20	1,23	2,420	2,98	1,00	3,57	107,51
pa0058	M04_Sottofinestra esistente	Esterno	NE	1,20	0,54	1,953	1,05	1,00	1,27	38,09
pa0059	Cassonetto esistente	Esterno	NE	1,20	0,24	1,235	0,30	1,00	0,36	10,70
pa0008	M01_Parete vs esterno (Esistente)	Esterno	SE	1,10	16,61	1,103	18,32	1,00	20,15	606,44
se0007	Serramento 137x205 esistente	Esterno	SE	1,10	2,81	2,420	6,80	1,00	7,48	225,03
pa0060	M04_Sottofinestra esistente	Esterno	SE	1,10	1,23	1,953	2,41	1,00	2,65	79,72
pa0061	Cassonetto esistente	Esterno	SE	1,10	0,55	1,235	0,68	1,00	0,74	22,41
se0008	Serramento 137x205 esistente	Esterno	SE	1,10	2,81	2,420	6,80	1,00	7,48	225,03
pa0062	M04_Sottofinestra esistente	Esterno	SE	1,10	1,23	1,953	2,41	1,00	2,65	79,72
pa0063	Cassonetto esistente	Esterno	SE	1,10	0,55	1,235	0,68	1,00	0,74	22,41
pa0013	M06_tramezzo c.a. sp.60 vs ZNR	sottotetto 1	-	1,00	16,13	2,218	35,77	0,90	32,20	969,11
pa0015	M06_tramezzo c.a. sp.60 vs ZNR	Vano scale P1	-	1,00	10,54	2,218	23,37	0,40	9,35	281,42
pa0019	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	4,84	2,509	12,15	0,00	0,00	0,00
pa0023	M08_tramezzo laterizio sp.10	Locale interno alla zona	-	1,00	4,84	2,509	12,15	0,00	0,00	0,00
pt0003	pilastro	Esterno	-	1,00	4,10	0,520	2,13	1,00	2,13	64,15
pt0004	pilastro	Esterno	-	1,00	4,10	0,520	2,13	1,00	2,13	64,15
pt0005	solaio interpiano	Esterno	-	1,00	2,90	0,433	1,26	1,00	1,26	37,80
pt0006	solaio interpiano	Esterno	-	1,00	2,30	0,433	1,00	1,00	1,00	29,98
pt0007	solaio interpiano	Esterno	-	1,00	6,20	0,433	2,68	1,00	2,68	80,81
pt0008	solaio interpiano	Esterno	-	1,00	6,10	0,433	2,64	1,00	2,64	79,46
pv0001	P03_Pavimento interpiano esistente	Locale interno alla zona	-	1,00	48,30	1,292	62,42	0,00	0,00	0,00
so0001	P04_Pavimento vs sottotetto esistente	sottotetto 2	-	1,00	48,30	1,889	91,26	0,90	82,13	2.472,21

TOTALE Unità immobiliare 1	1.850,86	56.527,74

Or Orientamento cardinale dell'elemento

GIROLAMETTI S.r.I.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

Coefficiente di maggiorazione della dispersione in funzione dell'orientamento [%]

An o I Area strutture al netto degli elementi in detrazione [m²] o lunghezza per i ponti termici [m] Uοψ Trasmittanza per le strutture $[W/(m^2K)]$ o trasmittanza lineica per i ponti termici [W/(mK)] Coefficiente di scambio termico della struttura verso l'ambiente x [W/K]

Hix Fattore di riduzione equivalente dello scambio termico verso l'ambiente x [-] btr.x

Н Coefficiente di scambio termico per trasmissione

Potenza termica dispersa per trasmissione in condizioni di progetto [W] Φ

11.3 ATTRIBUZIONE DEI PONTI TERMICI AGLI ELEMENTI OPACHI DI INVOLUCRO

Unità immobiliare 1

TOTALE scuola - Aula 4

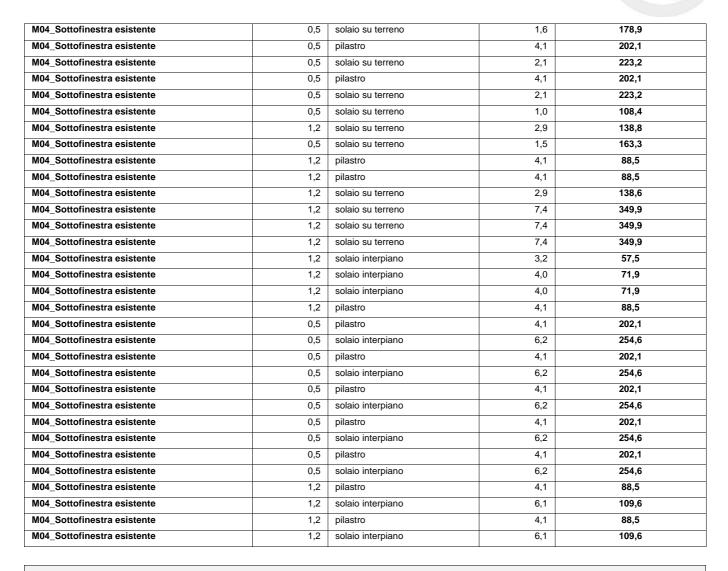
Strutture verticali opache	Area	Ponte termico associato	Lunghezza	Percentuale di influenza
	m ²		m	%
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	3,4	261,9
Cassonetto esistente	0,5	pilastro	3,4	261,9
Cassonetto esistente	0,5	pilastro	3,4	261,9

260,19

7.831,57

Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
		•	·	<u> </u>
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,2	solaio su terreno	2,3	889,4
Cassonetto esistente	0,2	solaio su terreno	1,6	636,7
Cassonetto esistente	0,2	pilastro	4,1	719,1
Cassonetto esistente	0,2	solaio su terreno	2,1	794,1
Cassonetto esistente	0,2	pilastro	4,1	719,1
Cassonetto esistente	0,2	solaio su terreno	2,1	794,1
Cassonetto esistente	0,2	solaio su terreno	1,0	385,6
Cassonetto esistente	0,5	solaio su terreno	2,9	493,9
Cassonetto esistente	0,2	solaio su terreno	1,5	581,1
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	solaio su terreno	2,9	493,1
Cassonetto esistente	0,5	solaio su terreno	7,4	1.244,9
Cassonetto esistente	0,5	solaio su terreno	7,4	1.244,9
Cassonetto esistente	0,5	solaio su terreno	7,4	1.244,9
Cassonetto esistente	0,5		3,2	204,8
Cassonetto esistente		solaio interpiano	·	255,9
	0,5	solaio interpiano	4,0	255,9
Cassonetto esistente	0,5	solaio interpiano	4,0	<u> </u>
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	solaio interpiano	2,9	211,9
Cassonetto esistente	0,2	solaio interpiano	2,3	336,0
Cassonetto esistente	0,2	pilastro	4,1	719,1
Cassonetto esistente	0,2	solaio interpiano	6,2	905,9
Cassonetto esistente	0,2	pilastro	4,1	719,1
Cassonetto esistente	0,2	solaio interpiano	6,2	905,9
Cassonetto esistente	0,2	pilastro	4,1	719,1
Cassonetto esistente	0,2	solaio interpiano	6,2	905,9
Cassonetto esistente	0,2	pilastro	4,1	719,1
Cassonetto esistente	0,2	solaio interpiano	6,2	905,9
Cassonetto esistente	0,2	pilastro	4,1	719,1
Cassonetto esistente	0,2	solaio interpiano	6,2	905,9
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	solaio interpiano	6,1	390,1
Cassonetto esistente	0,5	pilastro	4,1	314,9
Cassonetto esistente	0,5	solaio interpiano	6,1	390,1
M01_Parete vs esterno (Esistente)	24,5	pilastro	4,1	7,9
M01_Parete vs esterno (Esistente)	18,4	pilastro	4,1	5,3
M01_Parete vs esterno (Esistente)	21,3	pilastro	3,4	4,6
	=:,0		-,.	<i>r</i> -

		1		
M01_Parete vs esterno (Esistente)	40,3	pilastro	4,1	3,0
M01_Parete vs esterno (Esistente)	40,3	pilastro	4,1	3,0
M01_Parete vs esterno (Esistente)	40,3	pilastro	4,1	3,0
M01_Parete vs esterno (Esistente)	7,7	solaio su terreno	2,3	24,6
M01_Parete vs esterno (Esistente)	5,0	solaio su terreno	1,6	24,6
M01_Parete vs esterno (Esistente)	4,7	pilastro	4,1	22,2
M01_Parete vs esterno (Esistente)	4,7	solaio su terreno	2,1	24,6
M01_Parete vs esterno (Esistente)	2,2	solaio su terreno	1,0	24,6
M01_Parete vs esterno (Esistente)	8,9	solaio su terreno	2,9	22,5
M01_Parete vs esterno (Esistente)	4,3	solaio su terreno	1,5	24,6
M01_Parete vs esterno (Esistente)	7,7	pilastro	4,1	15,7
M01_Parete vs esterno (Esistente)	7,7	pilastro	4,1	15,7
M01_Parete vs esterno (Esistente)	7,7	solaio su terreno	2,9	24,6
M01_Parete vs esterno (Esistente)	17,3	solaio su terreno	7,4	24,6
M01_Parete vs esterno (Esistente)	11,6	solaio su terreno	3,2	24,6
M01_Parete vs esterno (Esistente)	10,6	solaio su terreno	2,5	24,6
M01 Parete vs esterno (Esistente)	14,8	pilastro	4,1	13,1
M01_Parete vs esterno (Esistente)	14,8	solaio su terreno	3,5	24,6
M01_Parete vs esterno (Esistente)	3,7	solaio su terreno	2,3	66,8
, ,	23,5		4,1	<u> </u>
M01_Parete vs esterno (Esistente)		pilastro	·	7,6
M01_Parete vs esterno (Esistente)	23,5	solaio interpiano	6,0	9,3
M01_Parete vs esterno (Esistente)	8,9	solaio interpiano	3,2	9,3
M01_Parete vs esterno (Esistente)	7,7	solaio interpiano	4,0	9,3
M01_Parete vs esterno (Esistente)	8,9	pilastro	4,1	14,3
M01_Parete vs esterno (Esistente)	8,9	solaio interpiano	2,9	9,3
M01_Parete vs esterno (Esistente)	8,0	solaio interpiano	2,3	9,3
M01_Parete vs esterno (Esistente)	16,2	pilastro	4,1	7,4
M01_Parete vs esterno (Esistente)	16,2	solaio interpiano	6,2	9,3
M01_Parete vs esterno (Esistente)	16,6	pilastro	4,1	7,5
M01_Parete vs esterno (Esistente)	16,6	solaio interpiano	6,1	9,3
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	3,4	73,6
M04_Sottofinestra esistente	1,2	pilastro	3,4	73,6
M04_Sottofinestra esistente	1,2	pilastro	3,4	73,6
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04 Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
M04_Sottofinestra esistente	1,2	pilastro	4,1	88,5
		·	· ·	250,0
M04_Sottofinestra esistente	0,5	solaio su terreno	2,3	200,0



11.4 DISPERSIONI PER VENTILAZIONE

Unità immobiliare 1

Volume netto totale dell'edificio Vn: 1.015,7 m³

	Ricambio	Portata d'aria ricambiata	Portata d'aria circolante	Rendimento termico degli
Descrizione dell'ambiente	d'aria	dall'impianto di ventilazione	attraverso apparecchi di	apparecchi di recupero del calore
	effettivo	meccanica	recupero del calore	
		m ³ /h	m ³ /h	%
«RigaZona»				

Zona riscaldata	Locale	Vn	V'i	HV	$\Delta \vartheta p$	ФV
			[m ³ /h]	[W/K]	[°C]	[W]
scuola	Aula 3	144,2	72,1	24,5	30,1	737,9
	Cucina 1	38,0	57,0	19,4	30,1	583,4
	Aula 2	155,7	77,8	26,5	30,1	796,5
	Corridoio	175,7	87,9	29,9	30,1	899,2
	Anti wc	6,6	13,3	4,5	34,1	154,0
	Wc7	4,3	8,7	2,9	34,1	100,3
	Wc6	4,0	7,9	2,7	34,1	91,9
	Wc5	3,8	7,5	2,6	34,1	87,1
_	Wc 4	3,7	7,5	2,5	34,1	86,9
	Wc3	4,1	8,3	2,8	34,1	95,9

www.studiogirolametti.it Via Acqui,13/A 12051 Alba (CN)

Cel +39 **348 51 39 182** T/F +39 **0173 36 50 27** e-mail: info@studiogirolametti.it P.IVA/C.F. 03493900041

Totale Unità immobiliare 1			718,3	244,2	-	7.598,4
	Aula 4	125,9	62,9	21,4	30,1	644,0
·	Disimpegno 2	31,2	15,6	5,3	30,1	159,6
	Wc	3,5	6,9	2,4	34,1	80,4
	Wc	3,1	6,3	2,1	34,1	72,9
	Bagni	19,6	39,3	13,3	34,1	455,2
	Cucina 2	35,7	53,6	18,2	30,1	548,7
	Aula 5	60,8	30,4	10,3	30,1	311,3
·	Locale deposito	19,3	9,6	3,3	30,1	98,5
	Ripostiglio 1	21,1	10,5	3,6	30,1	107,9
	dormitorio	117,0	58,5	19,9	30,1	598,8
	Anti wc 3	24,1	48,2	16,4	34,1	559,4
	Anti wc 2	4,4	8,8	3,0	34,1	102,6
	Anti wc 1	9,7	19,5	6,6	34,1	225,8

Vn Volume netto del singolo locale

V'i Portata d'aria effettiva di ventilazione per singolo locale

Δθρ Salto termico di progetto verso l'esterno

HV Coefficiente globale di scambio termico per ventilazione

ΦV Potenza termica dispersa per ventilazione in condizioni di ...

progetto

11.5 POTENZA TERMICA DI RIPRESA

Unità immobiliare 1

Zona riscaldata	Locale	fRH	Su	ΦRH
		[W/m ²]	[m ²]	[W]
scuola	Aula 3	30,0	41,2	1.236,1
	Cucina 1	30,0	10,9	325,7
	Aula 2	30,0	44,5	1.334,3
	Corridoio	30,0	50,2	1.506,3
	Anti wc	30,0	1,9	56,9
	Wc7	30,0	1,2	37,1
	Wc6	30,0	1,1	34,0
	Wc5	30,0	1,1	32,2
	Wc 4	30,0	1,1	32,1
	Wc3	30,0	1,2	35,4
	Anti wc 1	30,0	2,8	83,5
	Anti wc 2	30,0	1,3	37,9
	Anti wc 3	30,0	6,9	206,8
	dormitorio	30,0	33,4	1.003,0
	Ripostiglio 1	30,0	6,0	180,8
	Locale deposito	30,0	5,5	165,0
	Aula 5	30,0	17,4	521,4
	Cucina 2	30,0	10,2	306,4
	Bagni	30,0	5,6	168,2
	Wc	30,0	0,9	26,9
	Wc	30,0	1,0	29,7
	Disimpegno 2	30,0	8,9	267,4
	Aula 4	30,0	36,0	1.078,8
Totale Unità immobiliare 1		-	290,2	8.706,2

fRH Fattore di ripresa

Su Superficie utile netta del locale ΦRH Potenza termica di ripresa

11.6 DISPERSIONI DI PROGETTO E CARICO TERMICO TOTALE

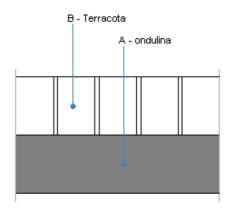
Unità immobiliare 1

GIROLAMETTI S.r.I.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

Zona riscaldata	ΦT [W]	Φ _V [W]	ΦRH [W]	ФнL [W]
scuola	56.527,74	7.598,39	8.706,16	72.832,29
Totale Unità immobiliare 1	56.527,74	7.598,39	8.706,16	72.832,29

Φт Potenza termica dispersa per trasmissione in condizioni di progetto Ф۷ Potenza termica dispersa per ventilazione in condizioni di progetto

ΦRH Potenza termica di ripresa ФНЬ Carico termico totale



11.7 STRUTTURE OPACHE

GIROLAMETTI S.r.l.

C02_Copertura esistente

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: C02_Copertura esistente

Tipologia:	Copertura	Disposizione:	Orizzontale
Verso:	Esterno	Spessore:	20,0 mm
Trasmittanza U:	6,588 W/(m ² K)	Resistenza R:	0,152 (m ² K)/W
Massa superf.:	33 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μυ
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-	-
Α	ondulina	10,0	5,610	0,002	1.333	1,00	20.000	20.000
В	Terracota	10,0	1,000	0,010	2.000	0,80	40,0	30,0
	Adduttanza esterna (flusso verticale ascendente)	-	-	0,040	-	-	-	-
	TOTALE	20,0		0,152				

Conduttanza unitaria superficiale interna: 10,000 W/(m²K) Resistenza unitaria superficiale interna: 0,100 (m²K)/W Conduttanza unitaria superficiale esterna: 25,000 W/(m²K) Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	Diano d`Alba	Zona climatica:	E
Trasmittanza della struttura U:	6,588 W/(m ² K)	Trasmittanza limite Ulim:	0,351 W/(m ² K)

Riferimento normativo: Limiti relativi alla Regione Piemonte Stralcio di Piano DPR 59 ESITO VERIFICA DI TRASMITTANZA: NO

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Diano d'Alba	Tipo di calcolo:	Classi di concentrazione
Verso:	Esterno	Coeff. di correzione btr,x:	
Classe di edificio:	Alloggi con basso indice di affollamento	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	65,0	-2,5	99,2	0,5
febbraio	20,0	65,0	0,6	92,4	0,5
marzo	20,0	65,0	5,8	84,7	0,5
aprile	20,0	65,0	10,9	83,1	0,5
maggio	20,0	65,0	14,9	81,6	0,5
giugno	20,0	65,0	19,5	80,4	0,5
luglio	20,0	65,0	22,1	74,5	0,5
agosto	20,0	65,0	20,8	77,9	0,5
settembre	20,0	65,0	16,8	85,9	0,5
ottobre	20,0	65,0	10,6	92,3	0,5
novembre	20,0	65,0	4,0	100,0	0,5
dicembre	20,0	65,0	-0,8	100,0	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-2,50	492,00
ESTIVA	20,00	1.728,10	22,10	1.980,00

Х	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a -636,375 Pa.
	La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
	La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.

VERIFICA FORMAZIONE CONDENSA SUPERFICIALE

	Pressione esterna Pe	Numero di ric. d'aria n	Variazione di pressione ΔP	Pressione interna Pi	Pressione int. di satur. Psi	Temp. sup. interna Tsi	Fattore di res. sup. fRsi
Mese	Pa	1/h	Pa	Pa	Pa	°C	
ottobre	1179	-	380,7	1597,77	1997,21	17,49	0,7326
novembre	812,85	-	648	1525,65	1907,06	16,76	0,7973
dicembre	571,44	-	810	1462,44	1828,05	16,09	0,8121
gennaio	492	-	810	1383	1728,75	15,22	0,7876
febbraio	589	-	785,7	1453,27	1816,59	15,99	0,7935
marzo	781	-	575,1	1413,61	1767,01	15,56	0,6874
aprile	1083	-	368,55	1488,41	1860,51	16,37	0,6009

Verifica di condensa superficiale:

Fattore di resistenza superficiale nel mese critico fRsi: 0,8121 (mese di Dicembre)

Fattore di resistenza superficiale ammissibile fRsiAmm: 0,1435

ESITO VERIFICA DI CONDENSA SUPERFICIALE: NO

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

S T U D I O GIROLAMETTI S.r.l. AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	494,0	590,9	782,5	1.083,9	1.382,3	1.820,4	1.979,1	1.912,2	1.642,8	1.179,7	814,3	573,3
	866,5	1.000,7	1.267,2	1.587,2	1.885,7	2.288,9	2.548,6	2.415,7	2.044,0	1.566,5	1.168,6	938,0
A-B	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	780,8	916,2	1.190,2	1.526,4	1.845,8	2.284,2	2.570,3	2.423,5	2.017,0	1.504,5	1.088,1	852,7
B-Add	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	495,9	637,7	921,8	1.303,3	1.693,5	2.265,6	2.658,6	2.455,2	1.912,2	1.277,5	812,8	571,4

Cel +39 348 51 39 182

T/F +39 0173 36 50 27

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	5,2	7,2	10,6	14,0	16,6	19,7	21,4	20,5	17,9	13,8	9,5	6,3
A-B	4,9	7,0	10,5	13,9	16,6	19,7	21,4	20,5	17,9	13,7	9,3	6,1
B-Add	3,4	5,7	9,5	13,3	16,2	19,6	21,5	20,6	17,6	13,1	8,2	4,7
Add-Esterno	-2,5	0,6	5,8	10,9	14,9	19,5	22,1	20,8	16,8	10,6	4,0	-0,8

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

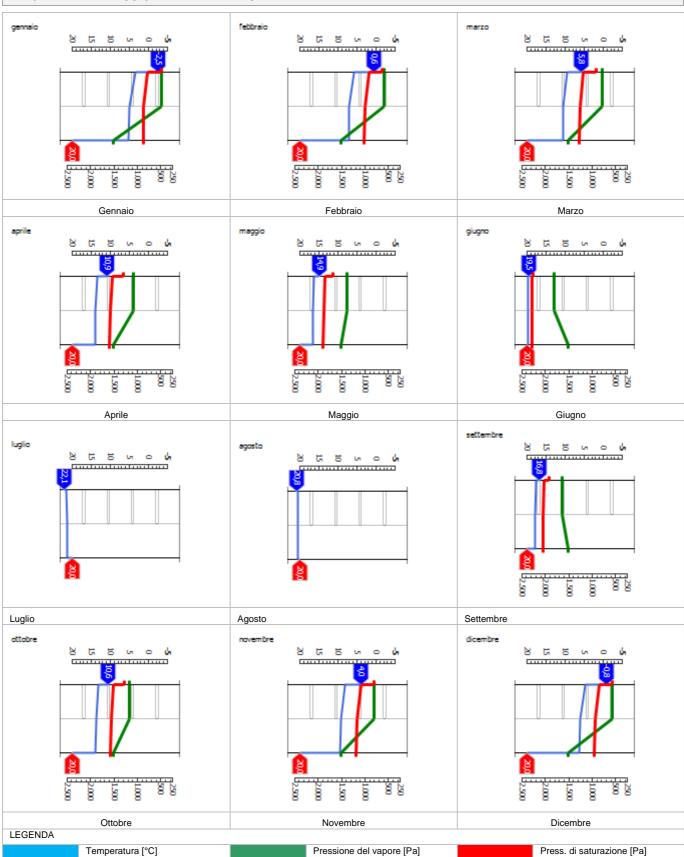
Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m 2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

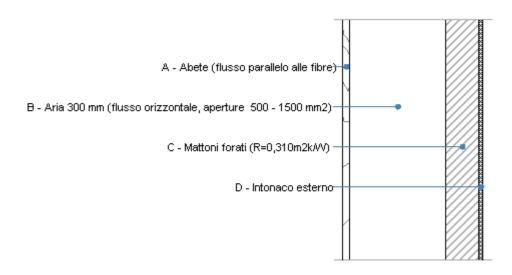
Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente



DIAGRAMMI DI PRESSIONE E TEMPERATURA

S T U D I O
GIROLAMETTI S.r.I.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE



Cassonetto esistente

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Cassonetto esistente

Tipologia:	Parete	Disposizione:	Verticale
Verso:	Esterno	Spessore:	510,0 mm
Trasmittanza U:	1,235 W/(m ² K)	Resistenza R:	0,810 (m ² K)/W
Massa superf.:	108 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μu
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Abete (flusso parallelo alle fibre)	25,0	0,120	0,208	450	1,38	666,7	222,2
В	Aria 300 mm (flusso orizzontale, aperture 500 - 1500 mm2)	350,0	3,340	0,105	1	1,00	1,0	1,0
С	Mattoni forati (R=0,310m2k/W)	120,0	0,387	0,310	800	1,00	10,0	5,0
D	Intonaco esterno	15,0	0,900	0,017	1.800	1,00	16,7	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	510,0		0,810				

Resistenza unitaria superficiale interna: 0,130 (m 2 K)/W Conduttanza unitaria superficiale interna: 7,690 W/(m²K) Conduttanza unitaria superficiale esterna: 25,000 W/(m²K) Resistenza unitaria superficiale esterna: 0,040 (m 2 K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	Diano d`Alba	Zona climatica:	E
Trasmittanza della struttura U:	1,235 W/(m ² K)	Trasmittanza limite Ulim:	0,386 W/(m ² K)

Riferimento normativo: Limiti relativi alla Regione Piemonte Stralcio di Piano DPR 59 ESITO VERIFICA DI TRASMITTANZA: NO

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Diano d'Alba	Tipo di calcolo:	Classi di concentrazione
Verso:	Esterno	Coeff. di correzione btr,x:	
Classe di edificio:	Alloggi con basso indice di affollamento	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

Cel +39 348 51 39 182

T/F +39 0173 36 50 27

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	65,0	-2,5	99,2	0,5
febbraio	20,0	65,0	0,6	92,4	0,5
marzo	20,0	65,0	5,8	84,7	0,5
aprile	20,0	65,0	10,9	83,1	0,5
maggio	20,0	65,0	14,9	81,6	0,5
giugno	20,0	65,0	19,5	80,4	0,5
luglio	20,0	65,0	22,1	74,5	0,5
agosto	20,0	65,0	20,8	77,9	0,5
settembre	20,0	65,0	16,8	85,9	0,5
ottobre	20,0	65,0	10,6	92,3	0,5
novembre	20,0	65,0	4,0	100,0	0,5
dicembre	20,0	65,0	-0,8	100,0	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-2,50	492,00
ESTIVA	20,00	1.728,10	22,10	1.980,00

Х	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 343,674 Pa.
	La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
Х	La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 343,674 Pa.

VERIFICA FORMAZIONE CONDENSA SUPERFICIALE

	Pressione esterna Pe	Numero di ric. d'aria n	Variazione di pressione ΔP	Pressione interna Pi	Pressione int. di satur. Psi	Temp. sup. interna T _{Si}	Fattore di res. sup. fRsi
Mese	Pa	1/h	Pa	Pa	Pa	°C	
ottobre	1179	-	380,7	1597,77	1997,21	17,49	0,7326
novembre	812,85	-	648	1525,65	1907,06	16,76	0,7973
dicembre	571,44	-	810	1462,44	1828,05	16,09	0,8121
gennaio	492	-	810	1383	1728,75	15,22	0,7876
febbraio	589	-	785,7	1453,27	1816,59	15,99	0,7935
marzo	781	-	575,1	1413,61	1767,01	15,56	0,6874
aprile	1083	-	368,55	1488,41	1860,51	16,37	0,6009

Verifica di condensa superficiale:

Fattore di resistenza superficiale nel mese critico fRsi: 0,8121 (mese di Dicembre)

Fattore di resistenza superficiale ammissibile fRsiAmm: 0,8395

ESITO VERIFICA DI CONDENSA SUPERFICIALE: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

GIROLAMETTI S.r.I.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	592,1	679,7	852,9	1.125,5	1.395,4	1.791,6	1.935,1	1.874,6	1.630,9	1.212,1	881,7	663,8
	1.277,4	1.392,0	1.604,7	1.840,4	2.045,9	2.306,9	2.466,9	2.385,7	2.150,4	1.825,7	1.528,1	1.339,2
A-B	572,6	662,0	839,0	1.117,2	1.392,8	1.797,3	1.943,8	1.882,1	1.633,3	1.205,7	868,3	645,8
	1.049,6	1.177,5	1.423,1	1.706,6	1.962,5	2.297,7	2.508,4	2.401,0	2.095,3	1.688,7	1.333,5	1.118,1
B-C	505,9	601,6	791,0	1.088,9	1.383,9	1.816,9	1.973,8	1.907,7	1.641,3	1.183,6	822,4	584,3
	565,5	703,1	987,2	1.359,6	1.732,8	2.270,5	2.634,9	2.446,8	1.939,6	1.334,7	879,2	640,2
C-D	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	544,2	683,3	967,6	1.342,8	1.721,1	2.269,1	2.641,8	2.449,3	1.931,5	1.317,6	859,2	620,7
D-Add	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	495,9	637,7	921,8	1.303,3	1.693,5	2.265,6	2.658,6	2.455,2	1.912,2	1.277,5	812,8	571,4

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	16,4	16,9	17,7	18,5	19,2	19,9	20,3	20,1	19,5	18,5	17,4	16,7
A-B	10,6	11,9	14,1	16,2	17,9	19,8	20,9	20,3	18,7	16,1	13,3	11,3
B-C	7,7	9,4	12,2	15,0	17,2	19,7	21,1	20,4	18,2	14,9	11,2	8,6
C-D	-0,9	2,0	6,8	11,5	15,3	19,5	22,0	20,7	17,0	11,3	5,1	0,7
D-Add	-1,4	1,6	6,5	11,3	15,2	19,5	22,0	20,8	17,0	11,1	4,8	0,2
Add-Esterno	-2,5	0,6	5,8	10,9	14,9	19,5	22,1	20,8	16,8	10,6	4,0	-0,8

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0.0000	0,0000	0.0000	0,0000	0,0000	0,0000	0.0000	0.0000	0.0000	0,0000	0,0000

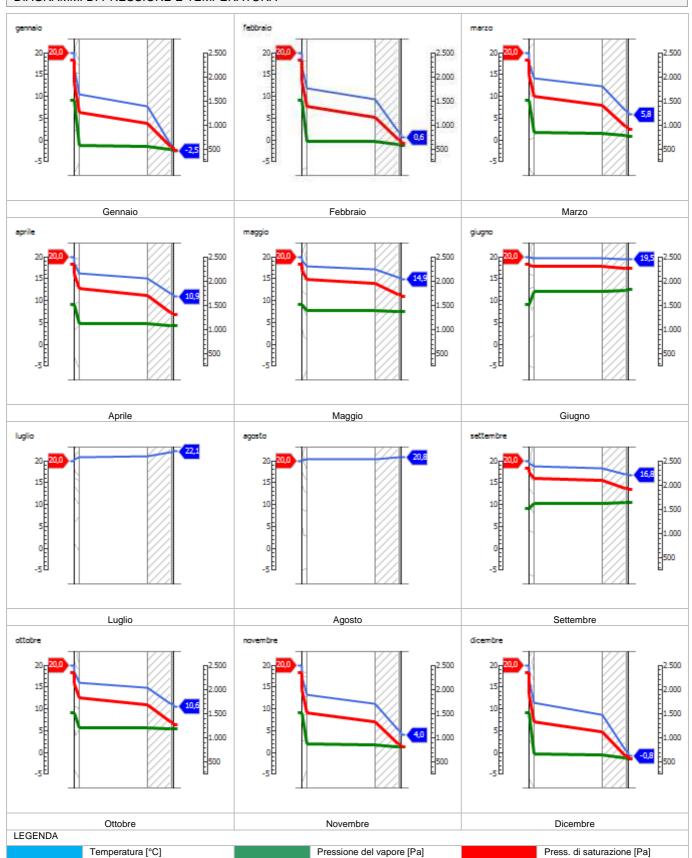
Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m² nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc, max: 0,5000 kg/m²

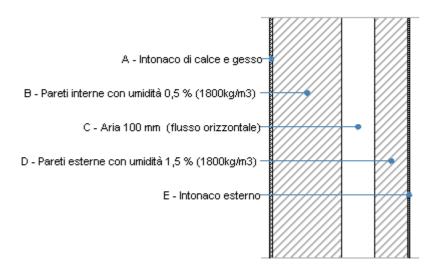
Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente



DIAGRAMMI DI PRESSIONE E TEMPERATURA

S T U D I O GIROLAMETTI S.r.I.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE



M01_Parete vs esterno (Esistente)

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: M01_Parete vs esterno (Esistente)

Tipologia:	Parete	Disposizione:	Verticale
Verso:	Esterno	Spessore:	510,0 mm
Trasmittanza U:	1,103 W/(m ² K)	Resistenza R:	0,907 (m ² K)/W
Massa superf.:	666 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μυ
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
В	Pareti interne con umidità 0,5 % (1800kg/m3)	250,0	0,720	0,347	1.800	0,84	5,6	5,6
С	Aria 100 mm (flusso orizzontale)	120,0	0,560	0,214	1	1,00	1,0	1,0
D	Pareti esterne con umidità 1,5 % (1800kg/m3)	120,0	0,800	0,150	1.800	0,84	5,6	5,6
Е	Intonaco esterno	10,0	0,900	0,011	1.800	1,00	16,7	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	510,0		0,907				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	Diano d`Alba	Zona climatica:	E
Trasmittanza della struttura U:	1,103 W/(m ² K)	Trasmittanza limite Ulim:	0,386 W/(m ² K)

Riferimento normativo: Limiti relativi alla Regione Piemonte Stralcio di Piano DPR 59

ESITO VERIFICA DI TRASMITTANZA: NO

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Diano d'Alba	Tipo di calcolo:	Classi di concentrazione
Verso:	Esterno	Coeff. di correzione btr,x:	
Classe di edificio:	Alloggi con basso indice di affollamento	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	65,0	-2,5	99,2	0,5
febbraio	20,0	65,0	0,6	92,4	0,5
marzo	20,0	65,0	5,8	84,7	0,5
aprile	20,0	65,0	10,9	83,1	0,5
maggio	20,0	65,0	14,9	81,6	0,5
giugno	20,0	65,0	19,5	80,4	0,5
luglio	20,0	65,0	22,1	74,5	0,5
agosto	20,0	65,0	20,8	77,9	0,5
settembre	20,0	65,0	16,8	85,9	0,5
ottobre	20,0	65,0	10,6	92,3	0,5
novembre	20,0	65,0	4,0	100,0	0,5
dicembre	20,0	65,0	-0,8	100,0	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe	
	°C	Pa	°C	Pa	
INVERNALE	20,00	1.519,00	-2,50	492,00	
ESTIVA	20,00	1.728,10	22,10	1.980,00	

	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.
Х	La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,260 kg/m² (rievaporabile durante il periodo estivo).
Х	La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 390,058 Pa.

VERIFICA FORMAZIONE CONDENSA SUPERFICIALE

	Pressione esterna Pe	Numero di ric. d'aria n	Variazione di pressione ΔP	Pressione interna Pi	Pressione int. di satur. Psi	Temp. sup. interna T _S i	Fattore di res. sup. fRsi
Mese	Pa	1/h	Pa	Pa	Pa	°C	
ottobre	1179	-	380,7	1597,77	1997,21	17,49	0,7326
novembre	812,85	-	648	1525,65	1907,06	16,76	0,7973
dicembre	571,44	-	810	1462,44	1828,05	16,09	0,8121
gennaio	492	-	810	1383	1728,75	15,22	0,7876
febbraio	589	-	785,7	1453,27	1816,59	15,99	0,7935
marzo	781	-	575,1	1413,61	1767,01	15,56	0,6874
aprile	1083	-	368,55	1488,41	1860,51	16,37	0,6009

Verifica di condensa superficiale:

Fattore di resistenza superficiale nel mese critico fRsi: 0,8121 (mese di Dicembre)

Fattore di resistenza superficiale ammissibile fRsiAmm: 0,8567

ESITO VERIFICA DI CONDENSA SUPERFICIALE: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.472,5	1.476,9	1.485,6	1.499,3	1.512,8	1.532,7	1.539,9	1.536,9	1.524,6	1.503,6	1.487,0	1.476,1
	1.866,5	1.926,0	2.029,4	2.135,5	2.222,1	2.325,5	2.385,7	2.355,4	2.264,3	2.129,1	1.993,1	1.898,9
A-B	891,2	950,5	1.067,8	1.252,5	1.435,3	1.703,6	1.800,8	1.759,9	1.594,8	1.311,1	1.087,3	939,7
	1.058,1	1.185,6	1.430,1	1.711,9	1.965,8	2.298,0	2.506,8	2.400,4	2.097,5	1.694,1	1.340,9	1.126,4
B-C	840,9	904,9	1.031,7	1.231,1	1.428,5	1.718,4	1.823,4	1.779,2	1.600,9	1.294,5	1.052,7	893,3
	730,4	865,9	1.143,5	1.488,9	1.820,9	2.281,3	2.584,1	2.428,5	2.000,1	1.466,3	1.039,6	802,2
C-D	561,8	652,2	831,2	1.112,7	1.391,3	1.800,5	1.948,7	1.886,2	1.634,6	1.202,1	860,9	635,9
	551,3	690,0	974,2	1.348,5	1.725,1	2.269,6	2.639,5	2.448,4	1.934,2	1.323,4	865,9	627,2
D-E	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	538,8	678,3	962,6	1.338,5	1.718,2	2.268,7	2.643,6	2.449,9	1.929,4	1.313,3	854,1	615,7
E-Add	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	495,9	637,7	921,8	1.303,3	1.693,5	2.265,6	2.658,6	2.455,2	1.912,2	1.277,5	812,8	571,4

TEMPERATURE

TUDIO

GIROLAMETTI S.F.I. AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	16,8	17,2	18,0	18,7	19,3	19,9	20,3	20,1	19,5	18,7	17,7	17,0
A-B	16,4	16,9	17,7	18,6	19,2	19,9	20,3	20,1	19,5	18,5	17,5	16,7
B-C	7,8	9,5	12,3	15,1	17,2	19,7	21,1	20,4	18,3	14,9	11,3	8,7
C-D	2,5	4,9	8,9	12,9	16,0	19,6	21,6	20,6	17,5	12,7	7,5	3,8
D-E	-1,2	1,7	6,6	11,4	15,2	19,5	22,0	20,8	17,0	11,1	4,9	0,4
E-Add	-1,5	1,5	6,4	11,3	15,1	19,5	22,0	20,8	16,9	11,0	4,7	0,1
Add-Esterno	-2,5	0,6	5,8	10,9	14,9	19,5	22,1	20,8	16,8	10,6	4,0	-0,8

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. C/D												
Gc [Kg/m²]	0,1170	0,0343	-0,1089	-0,2431	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0123	0,0965
Ma [Kg/m²]	0,2259	0,2602	0,1513	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0123	0,1089
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

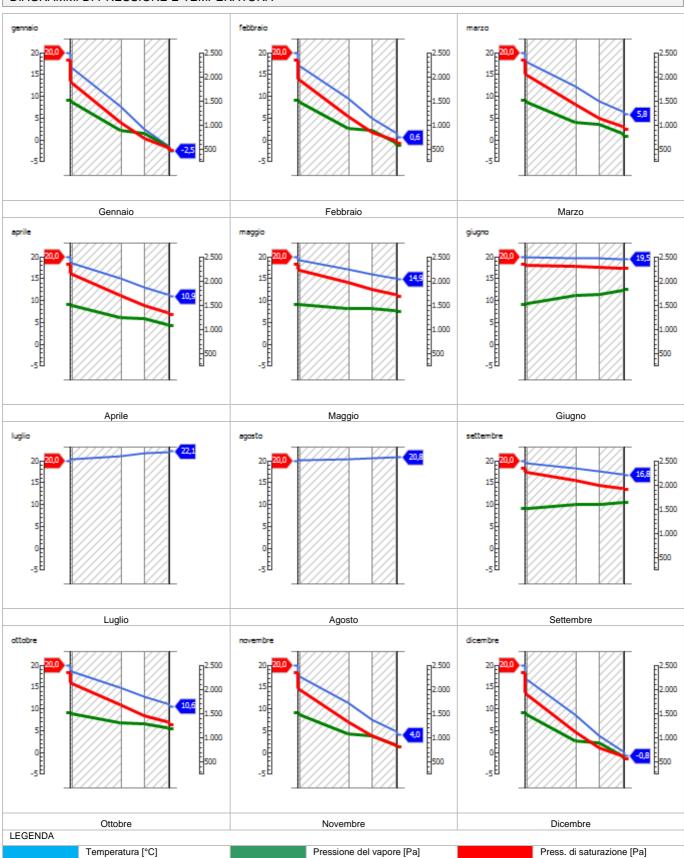
gennaio - Strato E. Formazione di condensa: 0,2259 kg/m² febbraio - Strato E. Formazione di condensa: 0,2602 kg/m² marzo - Strato E. Formazione di condensa: 0,1513 kg/m² novembre - Strato E. Formazione di condensa: 0,0123 kg/m² dicembre - Strato E. Formazione di condensa: 0,1089 kg/m² Mese condensazione massima: febbraio

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,1170 (mese di gennaio) kg/m² nell'interfaccia C-D Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,2602 (mese di febbraio) kg/m² nell'interfaccia C-D

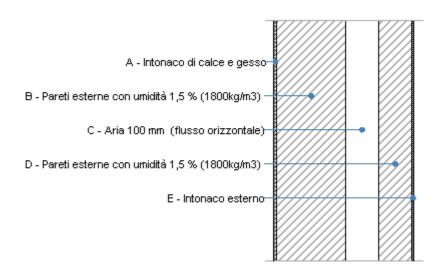
ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Interfaccia C-D - Formazione di condensa: 0,2602 kg/m²



e-mail: info@studiogirolametti.it P.IVA/C.F. 03493900041

DIAGRAMMI DI PRESSIONE E TEMPERATURA

STUDIO GIROLAMETTI S.F.I. AMBIENTE - ACUSTICA - ENERGETICA - STRUTTURALE



M01_Parete vs esterno da ZNR (Esistente)

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: M01_Parete vs esterno da ZNR (Esistente)

Tipologia:	Parete	Disposizione:	Verticale
Verso:	Da zona non riscaldata verso esterno	Spessore:	510,0 mm
Trasmittanza U:	1,146 W/(m ² K)	Resistenza R:	0,872 (m ² K)/W
Massa superf.:	666 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μυ
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
В	Pareti esterne con umidità 1,5 % (1800kg/m3)	250,0	0,800	0,313	1.800	0,84	5,6	5,6
С	Aria 100 mm (flusso orizzontale)	120,0	0,560	0,214	1	1,00	1,0	1,0
D	Pareti esterne con umidità 1,5 % (1800kg/m3)	120,0	0,800	0,150	1.800	0,84	5,6	5,6
Е	Intonaco esterno	10,0	0,900	0,011	1.800	1,00	16,7	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	510,0		0,872				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K) Resistenza unitaria superficiale interna: 0,130 (m 2 K)/W Conduttanza unitaria superficiale esterna: 25,000 W/(m²K) Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

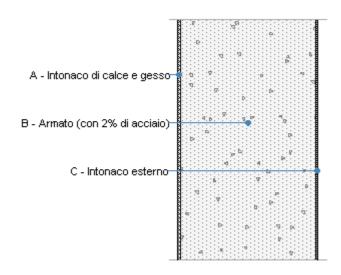
VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	Diano d`Alba	Zona climatica:	E
Trasmittanza della struttura U:	1,146 W/(m ² K)	Trasmittanza limite Ulim:	0,386 W/(m ² K)

Riferimento normativo: Limiti relativi alla Regione Piemonte Stralcio di Piano DPR 59

ESITO VERIFICA DI TRASMITTANZA: NO



M03_Parete vs esterno in c.a. sp.60

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: M03_Parete vs esterno in c.a. sp.60

Tipologia:	Parete	Disposizione:	Verticale
Verso:	Da zona non riscaldata verso esterno	Spessore:	600,0 mm
Trasmittanza U:	2,340 W/(m ² K)	Resistenza R:	0,427 (m ² K)/W
Massa superf.:	1.392 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μu
		[mm]	[W/(mK)]	$[(m^2K)/W]$	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
В	Armato (con 2% di acciaio)	580,0	2,500	0,232	2.400	1,00	130,0	80,0
С	Intonaco esterno	10,0	0,900	0,011	1.800	1,00	16,7	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	600,0		0,427				

Conduttanza unitaria superficiale interna: 7,690 W/(m ² K)	Resistenza unitaria superficiale interna: 0,130 (m ² K)/W
Conduttanza unitaria superficiale esterna: 25,000 W/(m ² K)	Resistenza unitaria superficiale esterna: 0,040 (m ² K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	Diano d`Alba	Zona climatica:	E
Trasmittanza della struttura U:	2,340 W/(m ² K)	Trasmittanza limite Ulim:	0,386 W/(m ² K)

Riferimento normativo: Limiti relativi alla Regione Piemonte Stralcio di Piano DPR 59

ESITO VERIFICA DI TRASMITTANZA: NO

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Diano d'Alba	Tipo di calcolo:	Classi di concentrazione
Verso:	Da zona non riscaldata verso esterno	Coeff. di correzione btr,x:	0,0
Classe di edificio:	Alloggi con basso indice di affollamento	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

Cel +39 348 51 39 182

T/F +39 0173 36 50 27

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna фе	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	65,0	-2,5	99,2	0,5
febbraio	20,0	65,0	0,6	92,4	0,5
marzo	20,0	65,0	5,8	84,7	0,5
aprile	20,0	65,0	10,9	83,1	0,5
maggio	20,0	65,0	14,9	81,6	0,5
giugno	20,0	65,0	19,5	80,4	0,5
luglio	20,0	65,0	22,1	74,5	0,5
agosto	20,0	65,0	20,8	77,9	0,5
settembre	20,0	65,0	16,8	85,9	0,5
ottobre	20,0	65,0	10,6	92,3	0,5
novembre	20,0	65,0	4,0	100,0	0,5
dicembre	20,0	65,0	-0,8	100,0	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-2,50	492,00
ESTIVA	20,00	1.728,10	22,10	1.980,00

	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.
Х	La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,455 kg/m² (rievaporabile durante il periodo estivo).
	La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.

VERIFICA FORMAZIONE CONDENSA SUPERFICIALE

	Pressione esterna Pe	Numero di ric. d'aria n	Variazione di pressione ΔP	Pressione interna Pi	Pressione int. di satur. Psi	Temp. sup. interna T _S i	Fattore di res. sup. fRsi
Mese	Pa	1/h	Pa	Pa	Pa	°C	
ottobre	1179	-	380,7	1597,77	1997,21	17,49	0,7326
novembre	812,85	-	648	1525,65	1907,06	16,76	0,7973
dicembre	571,44	-	810	1462,44	1828,05	16,09	0,8121
gennaio	492	-	810	1383	1728,75	15,22	0,7876
febbraio	589	-	785,7	1453,27	1816,59	15,99	0,7935
marzo	781	-	575,1	1413,61	1767,01	15,56	0,6874
aprile	1083	-	368,55	1488,41	1860,51	16,37	0,6009

Verifica di condensa superficiale:

Fattore di resistenza superficiale nel mese critico fRsi: 0,8121 (mese di Dicembre)

Fattore di resistenza superficiale ammissibile fRsiAmm: 0,6959

ESITO VERIFICA DI CONDENSA SUPERFICIALE: NO

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.517,5	1.517,7	1.517,9	1.518,4	1.518,8	1.519,5	1.519,7	1.519,6	1.519,2	1.518,5	1.518,0	1.517,6
	1.439,5	1.541,5	1.727,1	1.927,8	2.099,2	2.312,6	2.441,5	2.376,3	2.185,1	1.915,4	1.660,7	1.494,7
A-B	494,3	591,0	782,6	1.084,0	1.382,3	1.820,3	1.979,0	1.912,1	1.642,7	1.179,7	814,4	573,5
	619,0	753,1	1.036,1	1.400,7	1.761,2	2.274,0	2.618,2	2.440,8	1.959,2	1.376,5	929,0	689,7
B-C	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	591,0	726,5	1.010,2	1.379,0	1.746,2	2.272,2	2.626,9	2.443,9	1.948,9	1.354,4	902,6	663,4
C-Add	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	495,9	637,7	921,8	1.303,3	1.693,5	2.265,6	2.658,6	2.455,2	1.912,2	1.277,5	812,8	571,4

Cel +39 348 51 39 182

T/F +39 0173 36 50 27

TEMPERATURE

T U D I 0

GIROLAMETTI S.F.I. AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	13,2	14,1	15,7	17,2	18,4	19,8	20,6	20,2	19,0	17,1	15,1	13,7
A-B	12,4	13,4	15,2	16,9	18,3	19,8	20,7	20,3	18,9	16,8	14,6	13,0
B-C	0,2	2,9	7,5	12,0	15,5	19,6	21,8	20,7	17,2	11,7	5,9	1,7
C-Add	-0,4	2,4	7,1	11,8	15,4	19,5	21,9	20,7	17,1	11,5	5,5	1,1
Add-Esterno	-2,5	0,6	5,8	10,9	14,9	19,5	22,1	20,8	16,8	10,6	4,0	-0,8

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. @/A												
Gc [Kg/m²]	0,1108	0,3438	-0,1042	-1,0098	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,1108	0,4546	0,3504	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. A/B												
Gc [Kg/m²]	0,3438	-0,1042	-1,0098	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,1108
Ma [Kg/m²]	0,4546	0,3504	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,1108
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

gennaio - Strato B. Formazione di condensa: 0,1108 kg/m² 0,1108 - Strato C. Formazione di condensa: 0,4546 kg/m²

gennaio - Strato B. La quantità di condensa è superiore al valore massimo consentito: 0,4546 > 0,4200 kg/m²

0,4546 - Strato C. Formazione di condensa: 0,3504 kg/m² marzo - Strato B. Formazione di condensa: 0,3504 kg/m²

0,0000 - Strato C. Formazione di condensa: 0,1108 kg/m² Mese condensazione massima: gennaio

Verifica di condensa interstiziale:

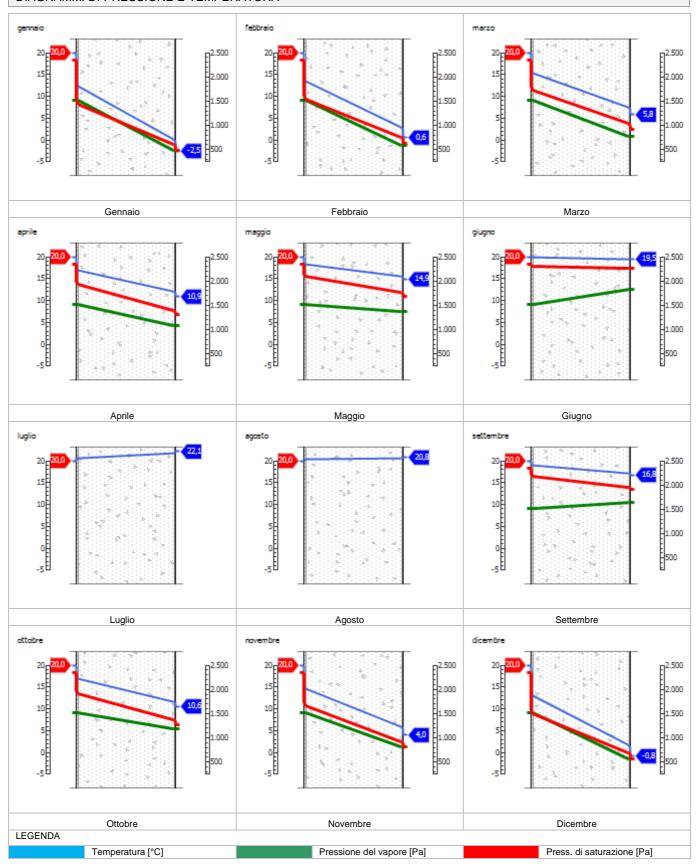
Quantità massima di vapore accumulato mensilmente Gc: 0,3438 (mese di gennaio) kg/m² nell'interfaccia A-B

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,4200 kg/m²

Quantità di vapore residuo Ma: 0,4546 (mese di gennaio) kg/m 2 nell'interfaccia @-A

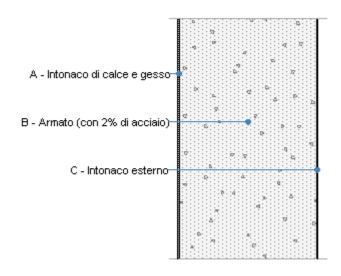
ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Interfaccia @-A

- Condensa eccessiva: 0,4546 > 0,4200 kg/m²



DIAGRAMMI DI PRESSIONE E TEMPERATURA

STUDIO GIROLAMETTI S.F.I. AMBIENTE - ACUSTICA - ENERGETICA - STRUTTURALE



M03_Parete vs esterno in c.a. sp.80

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: M03_Parete vs esterno in c.a. sp.80

Tipologia:	Parete	Disposizione:	Verticale
Verso:	Da zona non riscaldata verso esterno	Spessore:	800,0 mm
Trasmittanza U:	1,971 W/(m ² K)	Resistenza R:	0,507 (m ² K)/W
Massa superf.:	1.872 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μυ
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
В	Armato (con 2% di acciaio)	780,0	2,500	0,312	2.400	1,00	130,0	80,0
С	Intonaco esterno	10,0	0,900	0,011	1.800	1,00	16,7	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	800,0		0,507				

Conduttanza unitaria superficiale interna: 7,690 W/(m ² K)	Resistenza unitaria superficiale interna: 0,130 (m ² K)/W
Conduttanza unitaria superficiale esterna: 25,000 W/(m ² K)	Resistenza unitaria superficiale esterna: 0,040 (m ² K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	Diano d`Alba	Zona climatica:	E
Trasmittanza della struttura U:	1,971 W/(m ² K)	Trasmittanza limite Ulim:	0,386 W/(m ² K)

Riferimento normativo: Limiti relativi alla Regione Piemonte Stralcio di Piano DPR 59

ESITO VERIFICA DI TRASMITTANZA: NO

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Diano d'Alba	Tipo di calcolo:	Classi di concentrazione
Verso:	Da zona non riscaldata verso esterno	Coeff. di correzione btr,x:	0,0
Classe di edificio:	Alloggi con basso indice di affollamento	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

Cel +39 348 51 39 182

T/F +39 0173 36 50 27

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna фе	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	65,0	-2,5	99,2	0,5
febbraio	20,0	65,0	0,6	92,4	0,5
marzo	20,0	65,0	5,8	84,7	0,5
aprile	20,0	65,0	10,9	83,1	0,5
maggio	20,0	65,0	14,9	81,6	0,5
giugno	20,0	65,0	19,5	80,4	0,5
luglio	20,0	65,0	22,1	74,5	0,5
agosto	20,0	65,0	20,8	77,9	0,5
settembre	20,0	65,0	16,8	85,9	0,5
ottobre	20,0	65,0	10,6	92,3	0,5
novembre	20,0	65,0	4,0	100,0	0,5
dicembre	20,0	65,0	-0,8	100,0	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe	
	°C	Pa	°C	Pa	
INVERNALE	20,00	1.519,00	-2,50	492,00	
ESTIVA	20,00	1.728,10	22,10	1.980,00	

×	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 103,135 Pa.
	La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
	La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.

VERIFICA FORMAZIONE CONDENSA SUPERFICIALE

Mana	Pressione esterna Pe	Numero di ric. d'aria n	Variazione di pressione ΔP	Pressione interna Pi	Pressione int. di satur. Psi	Temp. sup. interna T _{Si}	Fattore di res. sup. fRsi
Mese	Pa	1/h	Pa	Pa	Pa	°C	
ottobre	1179	-	380,7	1597,77	1997,21	17,49	0,7326
novembre	812,85	-	648	1525,65	1907,06	16,76	0,7973
dicembre	571,44	-	810	1462,44	1828,05	16,09	0,8121
gennaio	492	-	810	1383	1728,75	15,22	0,7876
febbraio	589	-	785,7	1453,27	1816,59	15,99	0,7935
marzo	781	-	575,1	1413,61	1767,01	15,56	0,6874
aprile	1083	-	368,55	1488,41	1860,51	16,37	0,6009

Verifica di condensa superficiale:

Fattore di resistenza superficiale nel mese critico fRsi: 0,8121 (mese di Dicembre)

Fattore di resistenza superficiale ammissibile fRsiAmm: 0,7438

ESITO VERIFICA DI CONDENSA SUPERFICIALE: NO

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

GIROLAMETTI S.r.I.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.517,9	1.518,0	1.518,2	1.518,5	1.518,9	1.519,3	1.519,5	1.519,4	1.519,2	1.518,6	1.518,2	1.518,0
	1.556,8	1.648,4	1.812,8	1.987,8	2.135,2	2.316,5	2.424,8	2.370,1	2.208,5	1.977,1	1.754,3	1.606,5
A-B	493,7	590,5	782,2	1.083,7	1.382,2	1.820,5	1.979,2	1.912,4	1.642,8	1.179,6	814,0	573,0
	598,8	733,7	1.017,3	1.384,9	1.750,3	2.272,7	2.624,5	2.443,1	1.951,7	1.360,5	909,8	670,5
B-C	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	574,9	711,8	995,8	1.366,8	1.737,8	2.271,1	2.631,9	2.445,7	1.943,1	1.342,0	887,9	648,8
C-Add	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	495,9	637,7	921,8	1.303,3	1.693,5	2.265,6	2.658,6	2.455,2	1.912,2	1.277,5	812,8	571,4

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	14,2	15,0	16,4	17,7	18,7	19,9	20,5	20,2	19,2	17,6	15,9	14,7
A-B	13,6	14,5	16,0	17,4	18,5	19,9	20,6	20,2	19,1	17,3	15,4	14,1
B-C	-0,2	2,6	7,2	11,8	15,4	19,6	21,9	20,7	17,1	11,5	5,6	1,3
C-Add	-0,7	2,1	6,9	11,6	15,3	19,5	21,9	20,7	17,1	11,3	5,3	0,8
Add-Esterno	-2,5	0,6	5,8	10,9	14,9	19,5	22,1	20,8	16,8	10,6	4,0	-0,8

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

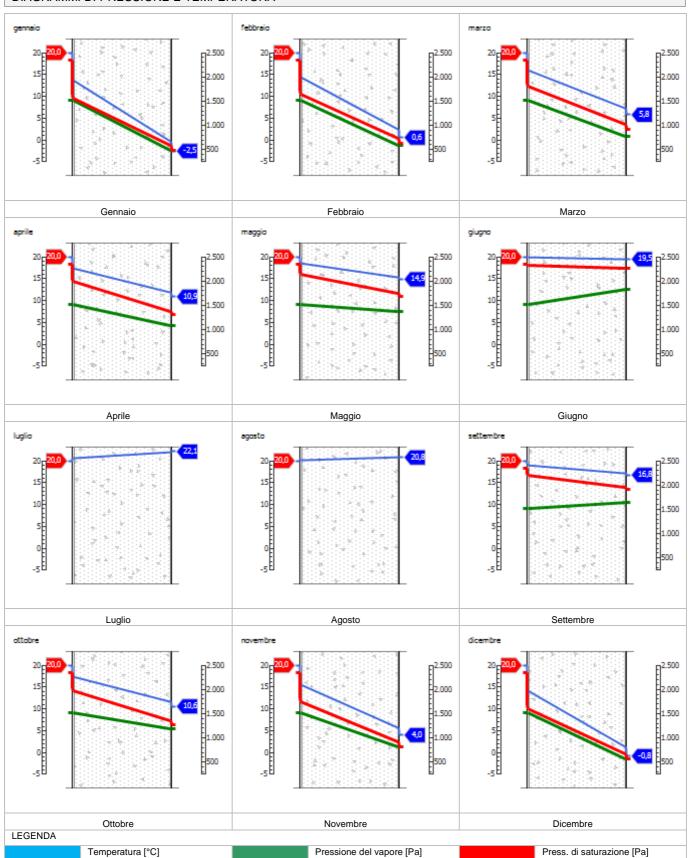
	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0000 (mese di -) kg/m² nell'interfaccia -Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

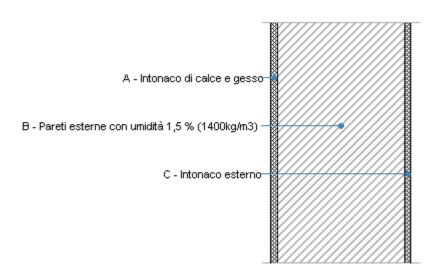
Quantità di vapore residuo Ma: 0,0000 (mese di -) kg/m² nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente



DIAGRAMMI DI PRESSIONE E TEMPERATURA

STUDIO GIROLAMETTI S.F.I. AMBIENTE - ACUSTICA - ENERGETICA - STRUTTURALE



M04_Sottofinestra esistente

Cel +39 348 51 39 182

T/F +39 0173 36 50 27

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: M04_Sottofinestra esistente

Tipologia:	Parete	Disposizione:	Verticale
Verso:	Esterno	Spessore:	210,0 mm
Trasmittanza U:	1,953 W/(m ² K)	Resistenza R:	0,512 (m ² K)/W
Massa superf.:	266 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore	Conduttività	Resistenza	Densità	Capacità term.	Fattore	Fattore
	Grato	S	λ	R	ρ	С	μа	μи
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
В	Pareti esterne con umidità 1,5 % (1400kg/m3)	190,0	0,600	0,317	1.400	0,84	5,6	5,6
С	Intonaco esterno	10,0	0,900	0,011	1.800	1,00	16,7	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	210,0		0,512				

Conduttanza unitaria superficiale interna: 7,690 W/(m ² K)	Resistenza unitaria superficiale interna: 0,130 (m ² K)/W
Conduttanza unitaria superficiale esterna: 25,000 W/(m ² K)	Resistenza unitaria superficiale esterna: 0,040 (m ² K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	Diano d`Alba	Zona climatica:	E
Trasmittanza della struttura U:	1,953 W/(m ² K)	Trasmittanza limite Ulim:	0,386 W/(m ² K)

Riferimento normativo: Limiti relativi alla Regione Piemonte Stralcio di Piano DPR 59

ESITO VERIFICA DI TRASMITTANZA: NO

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Diano d'Alba	Tipo di calcolo:	Classi di concentrazione
Verso:	Esterno	Coeff. di correzione btr,x:	
Classe di edificio:	Alloggi con basso indice di affollamento	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

Cel +39 348 51 39 182

T/F +39 0173 36 50 27

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	65,0	-2,5	99,2	0,5
febbraio	20,0	65,0	0,6	92,4	0,5
marzo	20,0	65,0	5,8	84,7	0,5
aprile	20,0	65,0	10,9	83,1	0,5
maggio	20,0	65,0	14,9	81,6	0,5
giugno	20,0	65,0	19,5	80,4	0,5
luglio	20,0	65,0	22,1	74,5	0,5
agosto	20,0	65,0	20,8	77,9	0,5
settembre	20,0	65,0	16,8	85,9	0,5
ottobre	20,0	65,0	10,6	92,3	0,5
novembre	20,0	65,0	4,0	100,0	0,5
dicembre	20,0	65,0	-0,8	100,0	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-2,50	492,00
ESTIVA	20,00	1.728,10	22,10	1.980,00

	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.
Х	La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,158 kg/m² (rievaporabile durante il periodo estivo).
	La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.

VERIFICA FORMAZIONE CONDENSA SUPERFICIALE

	Pressione esterna Pe	Numero di ric. d'aria n	Variazione di pressione ΔP	Pressione interna Pi	Pressione int. di satur. Psi	Temp. sup. interna T _S i	Fattore di res. sup. fRsi
Mese	Pa	1/h	Pa	Pa	Pa	°C	
ottobre	1179	-	380,7	1597,77	1997,21	17,49	0,7326
novembre	812,85	-	648	1525,65	1907,06	16,76	0,7973
dicembre	571,44	-	810	1462,44	1828,05	16,09	0,8121
gennaio	492	-	810	1383	1728,75	15,22	0,7876
febbraio	589	-	785,7	1453,27	1816,59	15,99	0,7935
marzo	781	-	575,1	1413,61	1767,01	15,56	0,6874
aprile	1083	-	368,55	1488,41	1860,51	16,37	0,6009

Verifica di condensa superficiale:

Fattore di resistenza superficiale nel mese critico fRsi: 0,8121 (mese di Dicembre)

Fattore di resistenza superficiale ammissibile fRsiAmm: 0,7461

ESITO VERIFICA DI CONDENSA SUPERFICIALE: NO

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

S T U D I O GIROLAMETTI S.r.l.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.433,4	1.441,5	1.457,5	1.482,7	1.507,6	1.544,2	1.557,5	1.551,9	1.529,4	1.490,7	1.460,1	1.440,0
	1.562,7	1.653,8	1.817,1	1.990,7	2.136,9	2.316,6	2.423,9	2.369,8	2.209,6	1.980,1	1.759,0	1.612,1
A-B	620,5	705,4	873,3	1.137,6	1.399,1	1.783,2	1.922,3	1.863,7	1.627,5	1.221,5	901,2	690,0
	597,8	732,8	1.016,4	1.384,2	1.749,8	2.272,6	2.624,8	2.443,2	1.951,3	1.359,7	908,9	669,6
B-C	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	574,2	711,1	995,1	1.366,2	1.737,4	2.271,1	2.632,1	2.445,8	1.942,8	1.341,4	887,2	648,1
C-Add	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	495,9	637,7	921,8	1.303,3	1.693,5	2.265,6	2.658,6	2.455,2	1.912,2	1.277,5	812,8	571,4

Cel +39 348 51 39 182

T/F +39 0173 36 50 27

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	14,3	15,1	16,4	17,7	18,7	19,9	20,5	20,2	19,2	17,6	15,9	14,7
A-B	13,7	14,5	16,0	17,4	18,6	19,9	20,6	20,2	19,1	17,4	15,5	14,1
B-C	-0,3	2,5	7,2	11,8	15,4	19,5	21,9	20,7	17,1	11,5	5,6	1,3
C-Add	-0,7	2,1	6,9	11,6	15,3	19,5	21,9	20,7	17,0	11,3	5,2	0,8
Add-Esterno	-2,5	0,6	5,8	10,9	14,9	19,5	22,1	20,8	16,8	10,6	4,0	-0,8

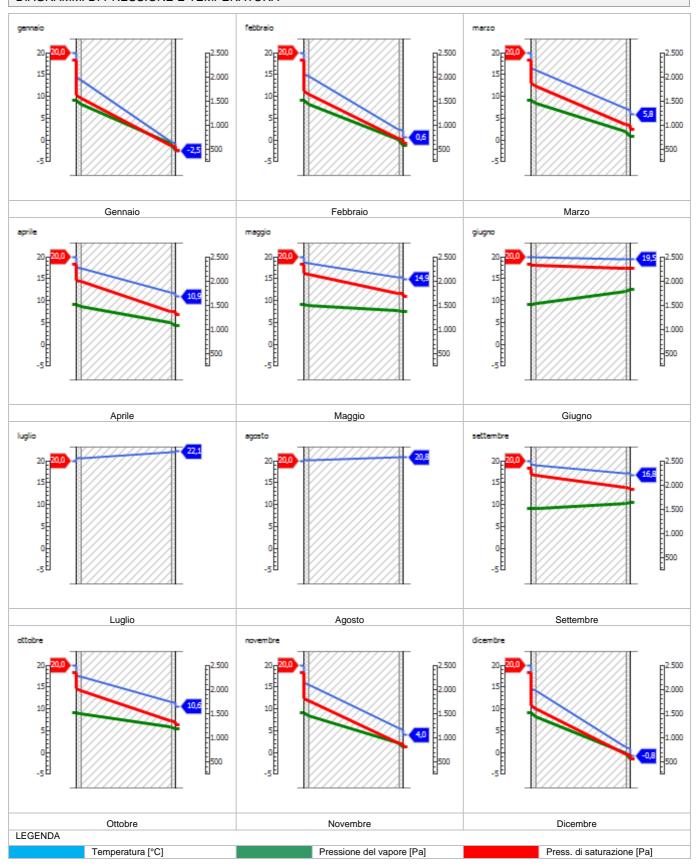
VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. B/C												
Gc [Kg/m²]	0,0833	-0,0911	-0,5254	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0751
Ma [Kg/m²]	0,1583	0,0673	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0751
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

gennaio - Strato D. Formazione di condensa: 0,1583 kg/m² febbraio - Strato D. Formazione di condensa: 0,0673 kg/m² dicembre - Strato D. Formazione di condensa: 0,0751 kg/m² Mese condensazione massima: gennaio

Verifica di condensa interstiziale:

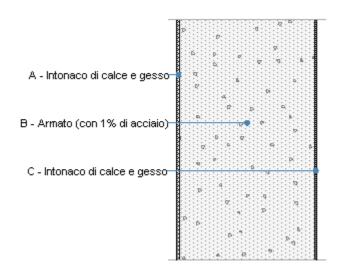
Quantità massima di vapore accumulato mensilmente Gc: 0,0833 (mese di gennaio) kg/m² nell'interfaccia B-C Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m² Quantità di vapore residuo Ma: 0,1583 (mese di gennaio) kg/m² nell'interfaccia B-C ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Interfaccia B-C - Formazione di condensa: 0,1583 kg/m²



e-mail: info@studiogirolametti.it P.IVA/C.F. 03493900041

DIAGRAMMI DI PRESSIONE E TEMPERATURA

STUDIO GIROLAMETTI S.r.I. AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE



M06_tramezzo c.a. sp.50

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: M06_tramezzo c.a. sp.50

Note:

Tipologia:	Parete	Disposizione:	Verticale
Verso:	Locale interno alla zona	Spessore:	500,0 mm
Trasmittanza U:	2,455 W/(m ² K)	Resistenza R:	0,407 (m ² K)/W
Massa superf.:	1.104 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

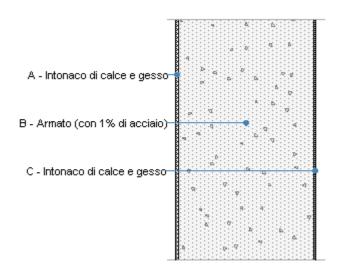
	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μυ
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
В	Armato (con 1% di acciaio)	480,0	2,300	0,209	2.300	1,00	130,0	80,0
С	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	500,0		0,407				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W



M06_tramezzo c.a. sp.60

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: M06_tramezzo c.a. sp.60

Tipologia:	Parete	Disposizione:	Verticale
Verso:	Locale interno alla zona	Spessore:	600,0 mm
Trasmittanza U:	2,218 W/(m ² K)	Resistenza R:	0,451 (m ² K)/W
Massa superf.:	1.334 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

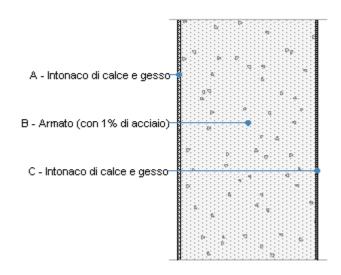
	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μυ
		[mm]	[W/(mK)]	$[(m^2K)/W]$	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
В	Armato (con 1% di acciaio)	580,0	2,300	0,252	2.300	1,00	130,0	80,0
С	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	600,0		0,451				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W



M06_tramezzo c.a. sp.60 vs ZNR

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: M06_tramezzo c.a. sp.60 vs ZNR

Note:

Tipologia:	Parete	Disposizione:	Verticale
Verso:	Zona non riscaldata	Spessore:	600,0 mm
Trasmittanza U:	2,218 W/(m ² K)	Resistenza R:	0,451 (m ² K)/W
Massa superf.:	1.334 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore	Fattore
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
В	Armato (con 1% di acciaio)	580,0	2,300	0,252	2.300	1,00	130,0	80,0
С	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	600,0		0,451				

Conduttanza unitaria superficiale interna: 7,690 $\mbox{W/(m}^2\mbox{K)}$ Resistenza unitaria superficiale interna: 0,130 (m 2 K)/W Resistenza unitaria superficiale esterna: 0,040 (m 2 K)/W Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	Diano d`Alba	Zona climatica:	E
Trasmittanza della struttura U:	2,218 W/(m ² K)	Trasmittanza limite Ulim:	0,800 W/(m ² K)

Riferimento normativo: Limiti relativi alla Regione Piemonte Stralcio di Piano DPR 59

ESITO VERIFICA DI TRASMITTANZA: NO

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Diano d'Alba	Tipo di calcolo:	Classi di concentrazione
Verso:	Zona non riscaldata	Coeff. di correzione btr,x:	0,8
Classe di edificio:	Alloggi con basso indice di affollamento	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

Cel +39 348 51 39 182

T/F +39 0173 36 50 27

	Temperatura interna T _i	Umidità relativa interna φ _i	Temperatura esterna T _e	Umidità relativa esterna φ _e	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	65,0	2,0	99,2	0,5
febbraio	20,0	65,0	4,5	92,4	0,5
marzo	20,0	65,0	8,6	84,7	0,5
aprile	20,0	65,0	12,7	83,1	0,5
maggio	20,0	65,0	15,9	81,6	0,5
giugno	20,0	65,0	19,6	80,4	0,5
luglio	20,0	65,0	21,7	74,5	0,5
agosto	20,0	65,0	20,6	77,9	0,5
settembre	20,0	65,0	17,4	85,9	0,5
ottobre	20,0	65,0	12,5	92,3	0,5
novembre	20,0	65,0	7,2	100,0	0,5
dicembre	20,0	65,0	3,4	100,0	0,5

CONDIZIONE	Temperatura interna θ _i	Pressione parziale interna p _i	Temperatura esterna θ_{Θ}	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	2,00	699,80
ESTIVA	20,00	1.686,40	21,70	1.932,30

Х	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 164,380 Pa.
	La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
	La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.

VERIFICA FORMAZIONE CONDENSA SUPERFICIALE

	Pressione esterna P _e	Numero di ric. d'aria n	Variazione di pressione ΔP	Pressione interna P _i	Pressione int. di satur. P _{si}	Temp. sup. interna T _{Si}	Fattore di res. sup. f _{Rsi}
Mese	Pa	1/h	Pa	Pa	Pa	°C	
ottobre	1336,96	-	303,75	1671,09	2088,86	18,2	0,7599
novembre	1015,17	-	518,4	1585,41	1981,76	17,36	0,7941
dicembre	779,16	-	672,3	1518,69	1898,36	16,69	0,8003
gennaio	699,77	-	729	1501,67	1877,08	16,51	0,806
febbraio	777,63	-	627,75	1468,16	1835,2	16,15	0,7519
marzo	946,26	-	461,7	1454,13	1817,67	16	0,6494
aprile	1219,71	-	295,65	1544,92	1931,15	16,96	0,5829

Verifica di condensa superficiale:

Fattore di resistenza superficiale nel mese critico f_{RSi}: 0,8060 (mese di Gennaio)

Fattore di resistenza superficiale ammissibile f_{RsiAmm}: 0,7116

ESITO VERIFICA DI CONDENSA SUPERFICIALE: NO

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

GIROLAMETTI S.r.l.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.517,8	1.517,9	1.518,2	1.518,6	1.519,0	1.519,5	1.519,6	1.519,6	1.519,3	1.518,8	1.518,3	1.517,9
	1.622,5	1.708,5	1.858,3	2.019,5	2.153,7	2.318,5	2.416,9	2.364,9	2.219,2	2.011,4	1.805,9	1.670,2
A-B	701,0	778,7	947,1	1.220,1	1.473,7	1.831,9	1.931,7	1.889,0	1.706,3	1.337,2	1.015,9	780,2
	822,5	958,6	1.225,1	1.554,6	1.863,5	2.286,5	2.562,2	2.414,4	2.025,9	1.536,9	1.127,6	896,4
B-C	699,8	777,6	946,3	1.219,7	1.473,6	1.832,3	1.932,3	1.889,6	1.706,6	1.337,0	1.015,2	779,2
	790,1	926,6	1.195,7	1.531,4	1.848,1	2.284,7	2.570,7	2.417,2	2.015,4	1.513,2	1.097,0	864,2
C-Add	699,8	777,6	946,3	1.219,7	1.473,6	1.832,3	1.932,3	1.889,6	1.706,6	1.337,0	1.015,2	779,2
	705,3	841,9	1.116,8	1.467,8	1.805,7	2.279,7	2.594,5	2.425,2	1.986,3	1.448,7	1.015,2	779,2

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	14,8	15,5	16,7	17,9	18,8	19,9	20,5	20,2	19,2	17,8	16,3	15,2
A-B	14,2	15,0	16,4	17,7	18,7	19,9	20,5	20,2	19,2	17,6	15,9	14,7
B-C	4,2	6,4	10,0	13,6	16,4	19,6	21,5	20,5	17,7	13,4	8,7	5,4
C-Add	3,6	5,9	9,6	13,3	16,3	19,6	21,5	20,5	17,6	13,2	8,3	4,9
Add-Esterno	2,0	4,5	8,6	12,7	15,9	19,6	21,7	20,6	17,4	12,5	7,2	3,4

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

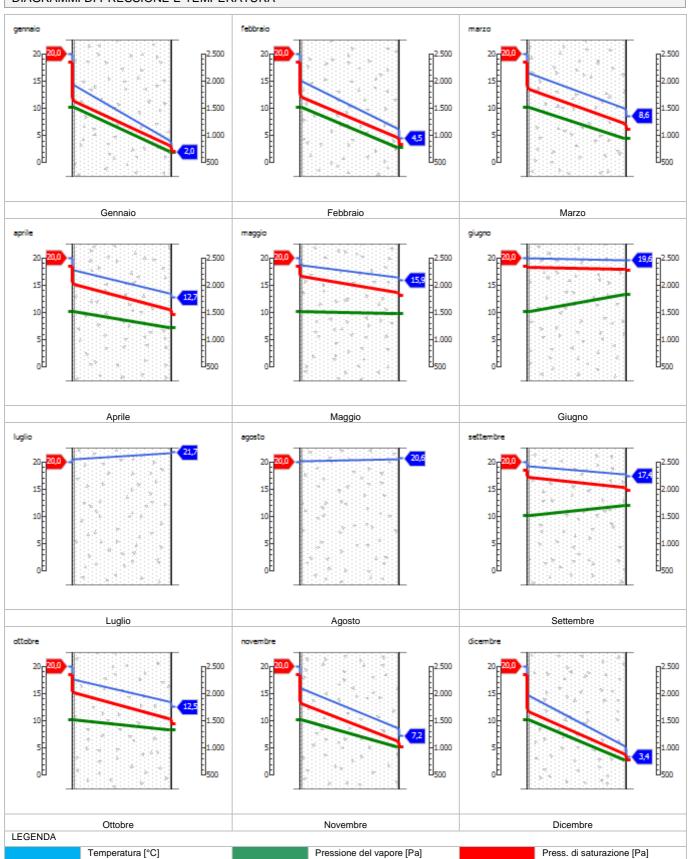
Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente $G_{\mathbb{C}}$: 0,0000 (mese di -) kg/m 2 nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia G_{C,max}: 0,5000 kg/m²

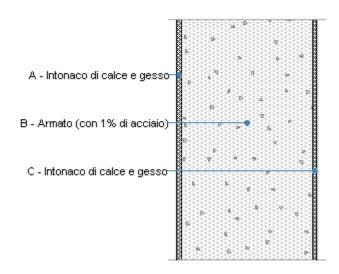
Quantità di vapore residuo M_a : 0,0000 (mese di -) kg/m 2 nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente



DIAGRAMMI DI PRESSIONE E TEMPERATURA

STUDIO GIROLAMETTI S.F.I. AMBIENTE - ACUSTICA - ENERGETICA - STRUTTURALE



M07_tramezzo c.a. sp.30

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: M07_tramezzo c.a. sp.30

Note:

Tipologia:	Parete	Disposizione:	Verticale
Verso:	Locale interno alla zona	Spessore:	300,0 mm
Trasmittanza U:	3,122 W/(m ² K)	Resistenza R:	0,320 (m ² K)/W
Massa superf.:	644 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

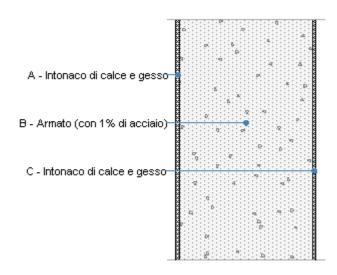
	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μυ
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
В	Armato (con 1% di acciaio)	280,0	2,300	0,122	2.300	1,00	130,0	80,0
С	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	300,0		0,320				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W



M07_tramezzo c.a. sp.40

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: M07_tramezzo c.a. sp.40

Note:

Tipologia:	Parete	Disposizione:	Verticale
Verso:	Locale interno alla zona	Spessore:	400,0 mm
Trasmittanza U:	2,749 W/(m ² K)	Resistenza R:	0,364 (m ² K)/W
Massa superf.:	874 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

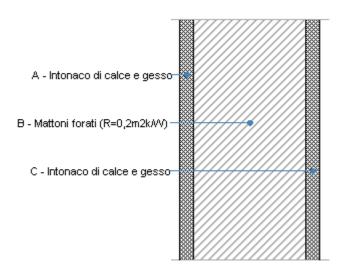
	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μυ
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
В	Armato (con 1% di acciaio)	380,0	2,300	0,165	2.300	1,00	130,0	80,0
С	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	400,0		0,364				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K)

Resistenza unitaria superficiale interna: 0,130 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W



M08_tramezzo laterizio sp.10

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: M08_tramezzo laterizio sp.10

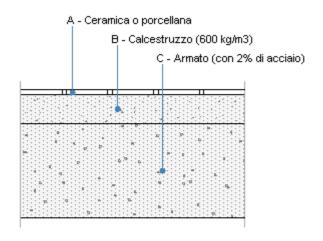
Note:

Tipologia:	Parete	Disposizione:	Verticale
Verso:	Locale interno alla zona	Spessore:	100,0 mm
Trasmittanza U:	2,509 W/(m ² K)	Resistenza R:	0,399 (m ² K)/W
Massa superf.:	64 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μυ
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
В	Mattoni forati (R=0,2m2k/W)	80,0	0,400	0,200	800	1,00	10,0	5,0
С	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	100,0		0,399				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K) Resistenza unitaria superficiale interna: $0,130 \text{ (m}^2\text{K)/W}$ Conduttanza unitaria superficiale esterna: 25,000 W/(m²K) Resistenza unitaria superficiale esterna: $0,040 \text{ (m}^2\text{K)/W}$



P01_Pavimento controterra

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: P01_Pavimento controterra

Tipologia:	Pavimento	Disposizione:	Orizzontale
Verso:	Da zona non riscaldata verso esterno	Spessore:	270,0 mm
Trasmittanza U:	1,826 W/(m ² K)	Resistenza R:	0,548 (m ² K)/W
Massa superf.:	539 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μu
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-	-
Α	Ceramica o porcellana	10,0	1,300	0,008	2.300	0,84	0,0	300.00 0,0
В	Calcestruzzo (600 kg/m3)	60,0	0,240	0,250	600	0,88	3,3	3,3
С	Armato (con 2% di acciaio)	200,0	2,500	0,080	2.400	1,00	130,0	80,0
	Adduttanza esterna (flusso verticale discendente)	-	-	0,040	-	-	-	-
	TOTALE	270,0		0,548				

Conduttanza unitaria superficiale interna: 5,880 W/(m²K)

Resistenza unitaria superficiale interna: 0,170 (m²K)/W

Conduttanza unitaria superficiale esterna: 25,000 W/(m²K)

Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	Diano d`Alba	Zona climatica:	E
Trasmittanza della struttura U:	1,826 W/(m ² K)	Trasmittanza limite Ulim:	0,351 W/(m ² K)

Riferimento normativo: Limiti relativi alla Regione Piemonte Stralcio di Piano DPR 59 ESITO VERIFICA DI TRASMITTANZA: NO

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Diano d'Alba	Tipo di calcolo:	Classi di concentrazione
Verso:	Da zona non riscaldata verso esterno	Coeff. di correzione btr,x:	0,0
Classe di edificio:	Alloggi con basso indice di affollamento	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	65,0	-2,5	99,2	0,5
febbraio	20,0	65,0	0,6	92,4	0,5
marzo	20,0	65,0	5,8	84,7	0,5
aprile	20,0	65,0	10,9	83,1	0,5
maggio	20,0	65,0	14,9	81,6	0,5
giugno	20,0	65,0	19,5	80,4	0,5
luglio	20,0	65,0	22,1	74,5	0,5
agosto	20,0	65,0	20,8	77,9	0,5
settembre	20,0	65,0	16,8	85,9	0,5
ottobre	20,0	65,0	10,6	92,3	0,5
novembre	20,0	65,0	4,0	100,0	0,5
dicembre	20,0	65,0	-0,8	100,0	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-2,50	492,00
ESTIVA	20,00	1.728,10	22,10	1.980,00

	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.
Х	La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 7,962 kg/m² (rievaporabile durante il periodo estivo).
	La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.

VERIFICA FORMAZIONE CONDENSA SUPERFICIALE

Mana	Pressione esterna Pe	Numero di ric. d'aria n	Variazione di pressione ΔP	Pressione interna Pi	Pressione int. di satur. Psi	Temp. sup. interna T _{Si}	Fattore di res. sup. fRsi
Mese	Pa	1/h	Pa	Pa	Pa	°C	
ottobre	1179	-	380,7	1597,77	1997,21	17,49	0,7326
novembre	812,85	-	648	1525,65	1907,06	16,76	0,7973
dicembre	571,44	-	810	1462,44	1828,05	16,09	0,8121
gennaio	492	-	810	1383	1728,75	15,22	0,7876
febbraio	589	-	785,7	1453,27	1816,59	15,99	0,7935
marzo	781	-	575,1	1413,61	1767,01	15,56	0,6874
aprile	1083	-	368,55	1488,41	1860,51	16,37	0,6009

Verifica di condensa superficiale:

Fattore di resistenza superficiale nel mese critico fRsi: 0,8121 (mese di Dicembre)

Fattore di resistenza superficiale ammissibile fRsiAmm: 0,7627

ESITO VERIFICA DI CONDENSA SUPERFICIALE: NO

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0
	1.467,7	1.567,3	1.747,9	1.942,4	2.108,0	2.313,6	2.437,4	2.374,8	2.190,9	1.930,5	1.683,4	1.521,6
A-B	1.511,2	1.511,9	1.513,4	1.515,7	1.518,0	1.521,3	1.522,5	1.522,0	1.520,0	1.516,4	1.513,6	1.511,8
	727,2	862,8	1.140,6	1.486,6	1.819,3	2.281,1	2.585,0	2.428,9	1.999,0	1.463,9	1.036,6	799,0
B-C	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	568,8	706,1	990,2	1.362,1	1.734,5	2.270,7	2.633,8	2.446,4	1.940,8	1.337,2	882,2	643,2
C-Add	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	495,9	637,7	921,8	1.303,3	1.693,5	2.265,6	2.658,6	2.455,2	1.912,2	1.277,5	812,8	571,4

TEMPERATURE

TUDIO

GIROLAMETTI S.r.I.

· ACUSTICA · ENERGETICA · STRUTTURALE

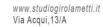
	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	13,0	14,0	15,6	17,2	18,4	19,8	20,7	20,2	19,0	17,1	15,0	13,5
A-B	12,7	13,7	15,4	17,0	18,3	19,8	20,7	20,3	19,0	16,9	14,8	13,2
B-C	2,4	4,9	8,9	12,9	16,0	19,6	21,6	20,6	17,5	12,7	7,5	3,8
C-Add	-0,9	2,0	6,8	11,6	15,3	19,5	21,9	20,7	17,0	11,3	5,2	0,7
Add-Esterno	-2,5	0,6	5,8	10,9	14,9	19,5	22,1	20,8	16,8	10,6	4,0	-0,8

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. @/A												
Gc [Kg/m²]	1,9256	1,9803	1,5841	1,0073	0,0761	-0,8140	-1,9864	-2,8704	-2,4500	0,0000	0,0000	0,0000
Ma [Kg/m²]	1,9256	3,9059	5,4900	6,4973	6,5734	5,7593	3,7730	0,9026	0,0000	0,0000	0,0000	0,0000
Interf. A/B												
Gc [Kg/m²]	1,9256	1,9803	1,5841	1,0073	0,0761	-0,8140	-1,9864	-2,8704	-2,4500	0,0000	0,0000	0,0000
Ma [Kg/m²]	1,9256	3,9059	5,4900	6,4973	6,5734	5,7593	3,7730	0,9026	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	1,9803	1,5841	1,0073	0,0761	-0,8140	-1,9864	-2,8704	-2,4500	0,0000	0,1418	1,2472	1,9256
Ma [Kg/m²]	5,2950	6,8790	7,8863	7,9624	7,1484	5,1620	2,2917	0,0000	0,0000	0,1418	1,3891	3,3147
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

- Strato B. La quantità di condensa è superiore al valore massimo consentito: 1,9256 > 0,5000 kg/m²
- Strato C. La quantità di condensa è superiore al valore massimo consentito: 1,9256 > 0,5000 kg/m²
 Strato D. La quantità di condensa è superiore al valore massimo consentito: 5,2950 > 0,5000 kg/m²
- gennaio Strato B. La quantità di condensa è superiore al valore massimo consentito: 3,9059 > 0,5000 kg/m²
- 1,9256 Strato C. La quantità di condensa è superiore al valore massimo consentito: 3,9059 > 0,5000 kg/m²
- 1,9256 Strato D. La quantità di condensa è superiore al valore massimo consentito: 6,8790 > 0,5000 kg/m²
- febbraio Strato B. La quantità di condensa è superiore al valore massimo consentito: 5,4900 > 0,5000 kg/m² 3,9059 Strato C. La quantità di condensa è superiore al valore massimo consentito: 5,4900 > 0,5000 kg/m²
- 3,9059 Strato D. La quantità di condensa è superiore al valore massimo consentito: 7,8863 > 0,5000 kg/m²
- marzo Strato B. La quantità di condensa è superiore al valore massimo consentito: 6,4973 > 0,5000 kg/m²
- 5,4900 Strato C. La quantità di condensa è superiore al valore massimo consentito: 6,4973 > 0,5000 kg/m²
- 5,4900 Strato D. La quantità di condensa è superiore al valore massimo consentito: 7,9624 > 0,5000 kg/m² aprile Strato B. La quantità di condensa è superiore al valore massimo consentito: 6,5734 > 0,5000 kg/m²
- 6,4973 Strato C. La quantità di condensa è superiore al valore massimo consentito: 6,5734 > 0,5000 kg/m²
- 6,4973 Strato D. La quantità di condensa è superiore al valore massimo consentito: 7,1484 > 0,5000 kg/m²
- maggio Strato B. La quantità di condensa è superiore al valore massimo consentito: 5,7593 > 0,5000 kg/m² 6,5734 Strato C. La quantità di condensa è superiore al valore massimo consentito: 5,7593 > 0,5000 kg/m²
- 6,5734 Strato D. La quantità di condensa è superiore al valore massimo consentito: 5,1620 > 0,5000 kg/m²
- giugno Strato B. La quantità di condensa è superiore al valore massimo consentito: 3,7730 > 0,5000 kg/m²
- 5,7593 Strato C. La quantità di condensa è superiore al valore massimo consentito: 3,7730 > 0,5000 kg/m²
- 5,7593 Strato D. La quantità di condensa è superiore al valore massimo consentito: 2,2917 > 0,5000 kg/m²
- luglio Strato B. La quantità di condensa è superiore al valore massimo consentito: 0,9026 > 0,5000 kg/m² 3,7730 Strato C. La quantità di condensa è superiore al valore massimo consentito: 0,9026 > 0,5000 kg/m²
- 0,0000 Strato D. Formazione di condensa: 0,1418 kg/m²
- 0,0000 Strato D. La quantità di condensa è superiore al valore massimo consentito: $1,3891 > 0,5000 \text{ kg/m}^2$ 0,0000 Strato D. La quantità di condensa è superiore al valore massimo consentito: $3,3147 > 0,5000 \text{ kg/m}^2$

Mese condensazione massima: aprile



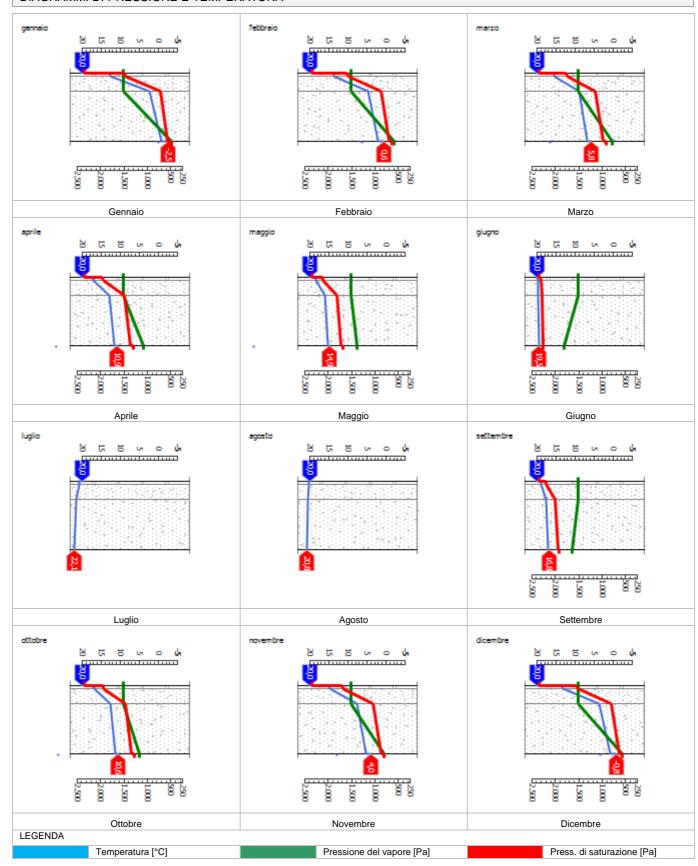
Cel +39 348 51 39 182 12051 Alba (CN) T/F +39 0173 36 50 27 e-mail: info@studiogirolametti.it P.IVA/C.F. 03493900041

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 1,9803 (mese di gennaio) kg/m² nell'interfaccia B-C Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m² Quantità di vapore residuo Ma: 7,9624 (mese di aprile) kg/m² nell'interfaccia @-A ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Interfaccia @-A

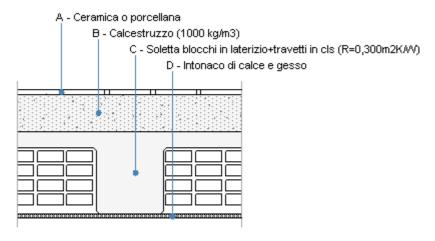
- Condensa eccessiva: 1,9256 > 0,5000 kg/m²

GIROLAMETTI S.r.l.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE



DIAGRAMMI DI PRESSIONE E TEMPERATURA

S T U D I O
GIROLAMETTI S.r.I.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE



P02_Pavimento vs interrato esistente

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: P02_Pavimento vs interrato esistente

Note:

Tipologia:	Pavimento	Disposizione:	Orizzontale
Verso:	Zona non riscaldata	Spessore:	310,0 mm
Trasmittanza U:	1,292 W/(m ² K)	Resistenza R:	0,774 (m ² K)/W
Massa superf.:	293 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore	Fattore μ _U
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-	-
Α	Ceramica o porcellana	10,0	1,300	0,008	2.300	0,84	0,0	300.00 0,0
В	Calcestruzzo (1000 kg/m3)	90,0	0,380	0,237	1.000	0,88	3,3	3,3
С	Soletta blocchi in laterizio+travetti in cls (R=0,300m2K/W)	200,0	0,533	0,375	900	1,00	0,0	999.99 9,0
D	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
	Adduttanza esterna (flusso verticale ascendente)	-	-	0,040	-	-	-	-
	TOTALE	310,0		0,774				

Conduttanza unitaria superficiale interna: 10,000 W/(m²K) Resistenza unitaria superficiale interna: 0,100 (m²K)/W Conduttanza unitaria superficiale esterna: 25,000 W/(m²K) Resistenza unitaria superficiale esterna: 0,040 (m^2K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	Diano d'Alba	Zona climatica:	E
Trasmittanza della struttura U:	1,292 W/(m ² K)	Trasmittanza limite Ulim:	0,800 W/(m ² K)

Riferimento normativo: Limiti relativi alla Regione Piemonte Stralcio di Piano DPR 59

ESITO VERIFICA DI TRASMITTANZA: NO

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Diano d'Alba	Tipo di calcolo:	Classi di concentrazione
Verso:	Zona non riscaldata	Coeff. di correzione btr,x:	0,8
Classe di edificio:	Alloggi con basso indice di affollamento	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

Cel +39 348 51 39 182

T/F +39 0173 36 50 27

	Temperatura interna T _i	Umidità relativa interna φ _i	Temperatura esterna T _e	Umidità relativa esterna φ _e	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	65,0	2,0	99,2	0,5
febbraio	20,0	65,0	4,5	92,4	0,5
marzo	20,0	65,0	8,6	84,7	0,5
aprile	20,0	65,0	12,7	83,1	0,5
maggio	20,0	65,0	15,9	81,6	0,5
giugno	20,0	65,0	19,6	80,4	0,5
luglio	20,0	65,0	21,7	74,5	0,5
agosto	20,0	65,0	20,6	77,9	0,5
settembre	20,0	65,0	17,4	85,9	0,5
ottobre	20,0	65,0	12,5	92,3	0,5
novembre	20,0	65,0	7,2	100,0	0,5
dicembre	20,0	65,0	3,4	100,0	0,5

CONDIZIONE	Temperatura interna θ _i	Pressione parziale interna p _i	Temperatura esterna θ_{Θ}	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	2,00	699,80
ESTIVA	20,00	1.686,40	21,70	1.932,30

	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.
Х	La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 2,750 kg/m² (rievaporabile durante il periodo estivo).
Х	La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 501,893 Pa.

VERIFICA FORMAZIONE CONDENSA SUPERFICIALE

	Pressione esterna P _e	Numero di ric. d'aria n	Variazione di pressione ΔP	Pressione interna P _i	Pressione int. di satur. P _{si}	Temp. sup. interna T _{Si}	Fattore di res. sup. f _{Rsi}
Mese	Pa	1/h	Pa	Pa	Pa	°C	
ottobre	1336,96	-	303,75	1671,09	2088,86	18,2	0,7599
novembre	1015,17	-	518,4	1585,41	1981,76	17,36	0,7941
dicembre	779,16	-	672,3	1518,69	1898,36	16,69	0,8003
gennaio	699,77	-	729	1501,67	1877,08	16,51	0,806
febbraio	777,63	-	627,75	1468,16	1835,2	16,15	0,7519
marzo	946,26	-	461,7	1454,13	1817,67	16	0,6494
aprile	1219,71	-	295,65	1544,92	1931,15	16,96	0,5829

Verifica di condensa superficiale:

Fattore di resistenza superficiale nel mese critico f_{RSi}: 0,8060 (mese di Gennaio)

Fattore di resistenza superficiale ammissibile f_{RsiAmm}: 0,8320

ESITO VERIFICA DI CONDENSA SUPERFICIALE: OK

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0
	1.998,2	2.042,5	2.117,1	2.194,0	2.255,7	2.328,9	2.371,4	2.349,1	2.285,1	2.190,2	2.091,4	2.022,9
A-B	921,3	978,1	1.101,2	1.300,7	1.485,9	1.747,6	1.820,5	1.789,4	1.655,9	1.386,2	1.151,4	979,3
	1.400,5	1.506,7	1.696,1	1.906,2	2.085,6	2.311,3	2.448,7	2.375,9	2.174,6	1.895,4	1.629,2	1.459,1
B-C	921,3	978,1	1.101,2	1.300,7	1.485,9	1.747,6	1.820,5	1.789,4	1.655,9	1.386,2	1.151,4	979,3
	771,6	908,3	1.178,8	1.517,9	1.839,2	2.283,7	2.575,6	2.418,9	2.009,3	1.499,5	1.079,4	845,7
C-D	699,8	777,6	946,3	1.219,7	1.473,6	1.832,3	1.932,3	1.889,6	1.706,6	1.337,0	1.015,2	779,2
	753,7	890,4	1.162,2	1.504,5	1.830,3	2.282,6	2.580,6	2.420,5	2.003,2	1.486,0	1.062,1	827,7
D-Add	699,8	777,6	946,3	1.219,7	1.473,6	1.832,3	1.932,3	1.889,6	1.706,6	1.337,0	1.015,2	779,2
	705,3	841,9	1.116,8	1.467,8	1.805,7	2.279,7	2.594,5	2.425,2	1.986,3	1.448,7	1.015,2	779,2

TEMPERATURE

T U D I 0

GIROLAMETTI S.F.I. AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	17,7	18,0	18,5	19,1	19,5	19,9	20,2	20,1	19,7	19,0	18,3	17,9
A-B	17,5	17,8	18,4	19,0	19,4	19,9	20,2	20,1	19,6	19,0	18,2	17,7
B-C	12,0	13,1	14,9	16,7	18,2	19,8	20,8	20,3	18,8	16,7	14,3	12,6
C-D	3,3	5,6	9,4	13,2	16,2	19,6	21,6	20,6	17,6	13,0	8,1	4,6
D-Add	2,9	5,3	9,2	13,1	16,1	19,6	21,6	20,6	17,5	12,9	7,9	4,3
Add-Esterno	2,0	4,5	8,6	12,7	15,9	19,6	21,7	20,6	17,4	12,5	7,2	3,4

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. C/D												
Gc [Kg/m²]	0,9894	0,4171	-0,5132	-1,3892	-2,3349	0,0000	0,0000	0,0000	0,0000	0,0000	0,4609	0,8825
Ma [Kg/m²]	2,3328	2,7499	2,2367	0,8476	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,4609	1,3434
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

 Strato E. La quantità di condensa è superiore al valore massimo consentito: 2,3328 > 0,4200 kg/m² gennaio - Strato E. La quantità di condensa è superiore al valore massimo consentito: 2,7499 > 0,4200 kg/m² febbraio - Strato E. La quantità di condensa è superiore al valore massimo consentito: 2,2367 > 0,4200 kg/m² marzo - Strato E. La quantità di condensa è superiore al valore massimo consentito: 0,8476 > 0,4200 kg/m² ottobre - Strato E. La quantità di condensa è superiore al valore massimo consentito: 0,4609 > 0,4200 kg/m² novembre - Strato E. La quantità di condensa è superiore al valore massimo consentito: 1,3434 > 0,4200 kg/m² Mese condensazione massima: febbraio

Verifica di condensa interstiziale:

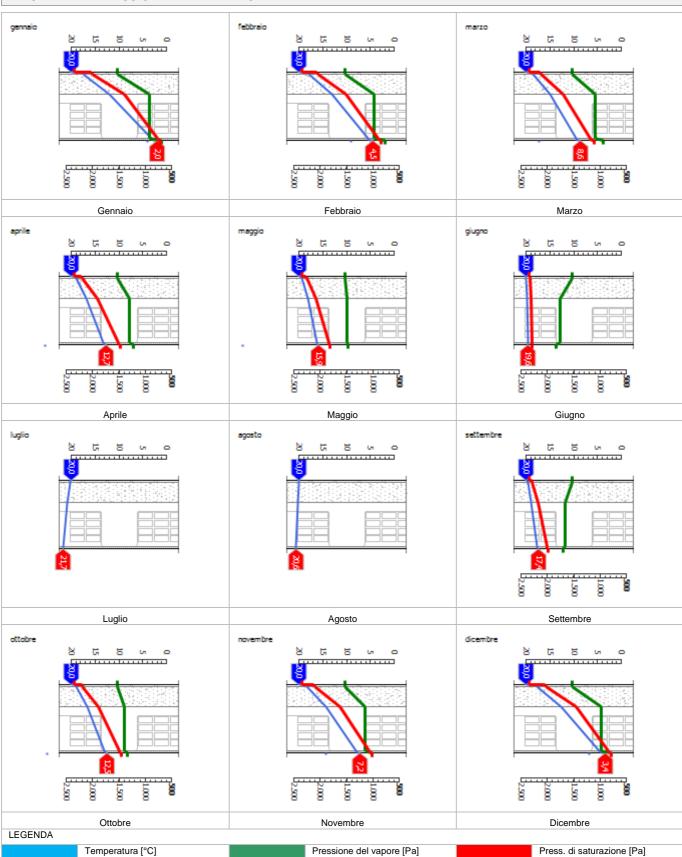
Quantità massima di vapore accumulato mensilmente G_C: 0,9894 (mese di gennaio) kg/m² nell'interfaccia C-D

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia G_{c,max}: 0,4200 kg/m²

Quantità di vapore residuo Ma: 2,7499 (mese di febbraio) kg/m² nell'interfaccia C-D

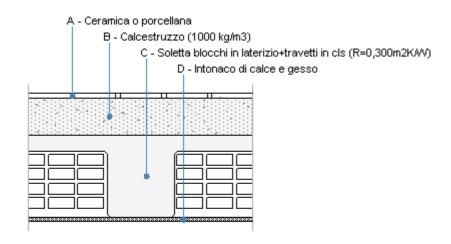
ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Interfaccia C-D

- Condensa eccessiva: 2,3328 > 0,4200 kg/m²



DIAGRAMMI DI PRESSIONE E TEMPERATURA

S T U D I O
GIROLAMETTI S.r.I.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE



P03_Pavimento interpiano esistente

GIROLAMETTI S.r.l.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: P03_Pavimento interpiano esistente

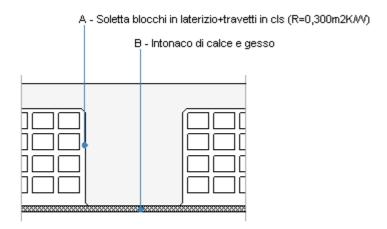
Note:

Tipologia:	Pavimento	Disposizione:	Orizzontale
Verso:	Locale interno alla zona	Spessore:	310,0 mm
Trasmittanza U:	1,292 W/(m ² K)	Resistenza R:	0,774 (m ² K)/W
Massa superf.:	293 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μu
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-	-
Α	Ceramica o porcellana	10,0	1,300	0,008	2.300	0,84	0,0	300.00 0,0
В	Calcestruzzo (1000 kg/m3)	90,0	0,380	0,237	1.000	0,88	3,3	3,3
С	Soletta blocchi in laterizio+travetti in cls (R=0,300m2K/W)	200,0	0,533	0,375	900	1,00	0,0	999.99 9,0
D	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
	Adduttanza esterna (flusso verticale ascendente)	-	-	0,040	-	-	-	-
	TOTALE	310,0		0,774				

Conduttanza unitaria superficiale interna: 10,000 W/(m ² K)	Resistenza unitaria superficiale interna: 0,100 (m ² K)/W
Conduttanza unitaria superficiale esterna: 25,000 W/(m ² K)	Resistenza unitaria superficiale esterna: 0,040 (m ² K)/W



P04_Pavimento vs sottotetto esistente

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: P04_Pavimento vs sottotetto esistente

Note:

Tipologia:	Pavimento	Disposizione:	Orizzontale
Verso:	Zona non riscaldata	Spessore:	210,0 mm
Trasmittanza U:	1,889 W/(m ² K)	Resistenza R:	0,529 (m ² K)/W
Massa superf.:	180 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore	Fattore μ _U
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-	-
Α	Soletta blocchi in laterizio+travetti in cls (R=0,300m2K/W)	200,0	0,533	0,375	900	1,00	0,0	999.99 9,0
В	Intonaco di calce e gesso	10,0	0,700	0,014	1.400	0,84	11,1	11,1
	Adduttanza esterna (flusso verticale ascendente)	-	-	0,040	-	-	-	-
	TOTALE	210,0		0,529				

Conduttanza unitaria superficiale interna: 10,000 W/(m²K) Resistenza unitaria superficiale interna: 0,100 (m²K)/W Conduttanza unitaria superficiale esterna: 25,000 W/(m²K) Resistenza unitaria superficiale esterna: 0,040 (m²K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	Diano d`Alba	Zona climatica:	E
Trasmittanza della struttura U:	1,889 W/(m ² K)	Trasmittanza limite Ulim:	0,800 W/(m ² K)

Riferimento normativo: Limiti relativi alla Regione Piemonte Stralcio di Piano DPR 59

ESITO VERIFICA DI TRASMITTANZA: NO

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Diano d`Alba	Tipo di calcolo:	Classi di concentrazione
Verso:	Zona non riscaldata	Coeff. di correzione btr,x:	0,9
Classe di edificio:	Alloggi con basso indice di affollamento	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

	Temperatura interna T _i	Umidità relativa interna φ _i	Temperatura esterna T _e	Umidità relativa esterna φ _e	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	65,0	-0,3	99,2	0,5
febbraio	20,0	65,0	2,5	92,4	0,5
marzo	20,0	65,0	7,2	84,7	0,5
aprile	20,0	65,0	11,8	83,1	0,5
maggio	20,0	65,0	15,4	81,6	0,5
giugno	20,0	65,0	19,6	80,4	0,5
luglio	20,0	65,0	21,9	74,5	0,5
agosto	20,0	65,0	20,7	77,9	0,5
settembre	20,0	65,0	17,1	85,9	0,5
ottobre	20,0	65,0	11,5	92,3	0,5
novembre	20,0	65,0	5,6	100,0	0,5
dicembre	20,0	65,0	1,3	100,0	0,5

CONDIZIONE	Temperatura interna θ _i	Pressione parziale interna p _i	Temperatura esterna θ_{Θ}	Pressione parziale esterna pe
	°C	Pa	°C	Pa
INVERNALE	20,00	1.519,00	-0,30	590,90
ESTIVA	20,00	1.707,10	21,90	1.956,00

Х	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 317,459 Pa.
	La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).
	La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.

VERIFICA FORMAZIONE CONDENSA SUPERFICIALE

	Pressione esterna P _e	Numero di ric. d'aria n	Variazione di pressione ΔP	Pressione interna P _i	Pressione int. di satur. P _{si}	Temp. sup. interna T _{Si}	Fattore di res. sup. f _{Rsi}
Mese	Pa	1/h	Pa	Pa	Pa	°C	
ottobre	1251,65	-	344,25	1630,33	2037,91	17,81	0,742
novembre	909,06	-	583,2	1550,58	1938,22	17,01	0,7926
dicembre	670,73	-	757,35	1503,82	1879,77	16,53	0,8145
gennaio	590,91	-	810	1481,91	1852,39	16,3	0,8177
febbraio	675,13	-	708,75	1454,76	1818,45	16,01	0,772
marzo	860,14	-	518,4	1430,38	1787,98	15,75	0,6676
aprile	1149,57	-	332,1	1514,88	1893,6	16,65	0,5909

Verifica di condensa superficiale:

Fattore di resistenza superficiale nel mese critico f_{RSi}: 0,8177 (mese di Gennaio)

Fattore di resistenza superficiale ammissibile f_{RsiAmm}: 0,7544

ESITO VERIFICA DI CONDENSA SUPERFICIALE: NO

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

GIROLAMETTI S.r.l.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0
	694,4	829,9	1.110,2	1.462,2	1.802,5	2.285,5	2.595,3	2.429,4	1.986,0	1.436,5	1.006,6	769,2
A-B	590,9	675,1	860,1	1.149,6	1.427,2	1.832,3	1.956,0	1.901,3	1.674,5	1.251,7	909,1	670,7
	667,6	802,8	1.084,5	1.441,1	1.788,2	2.284,0	2.603,4	2.432,2	1.976,2	1.415,0	980,1	742,1
B-Add	590,9	675,1	860,1	1.149,6	1.427,2	1.832,3	1.956,0	1.901,3	1.674,5	1.251,7	909,1	670,7
	595,6	730,9	1.015,2	1.383,4	1.748,8	2.279,7	2.626,3	2.440,1	1.949,0	1.356,3	909,1	670,7

TEMPERATURE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	16,2	16,7	17,6	18,5	19,1	19,9	20,4	20,1	19,5	18,4	17,3	16,5
A-B	1,8	4,3	8,5	12,6	15,9	19,6	21,7	20,6	17,4	12,4	7,1	3,2
B-Add	1,2	3,8	8,2	12,4	15,7	19,6	21,8	20,6	17,3	12,1	6,7	2,7
Add-Esterno	-0,3	2,5	7,2	11,8	15,4	19,6	21,9	20,7	17,1	11,5	5,6	1,3

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

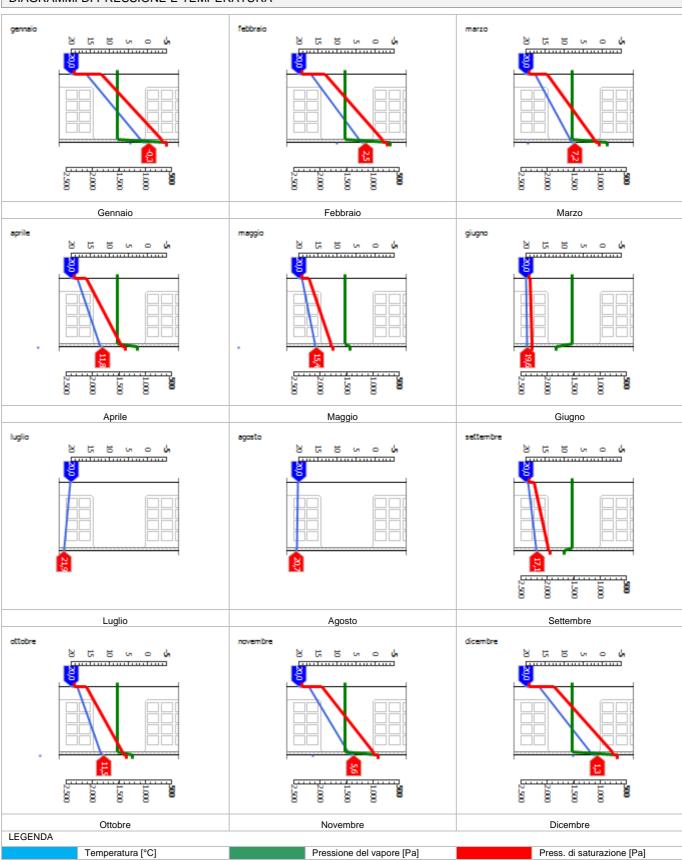
Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente G_{C} : 0,0000 (mese di -) kg/m² nell'interfaccia -

Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia G_{c,max}: 0,5000 kg/m²

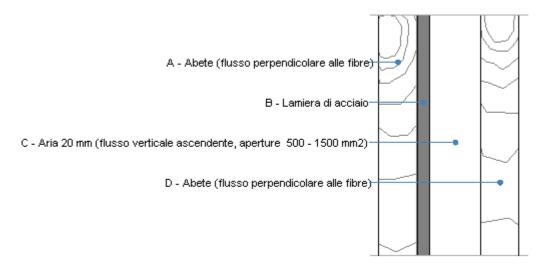
Quantità di vapore residuo M_a : 0,0000 (mese di -) kg/m 2 nell'interfaccia -

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Condensa assente



DIAGRAMMI DI PRESSIONE E TEMPERATURA

S T U D I O
GIROLAMETTI S.r.I.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE



Porta esterna non isolata

Le proprietà termiche dell'elemento opaco sono valutate in base alla UNI EN ISO 6946.

DATI DELLA STRUTTURA OPACA

Nome: Porta esterna non isolata

Tipologia:	Porta	Disposizione:	Verticale
Verso:	Esterno	Spessore:	55,0 mm
Trasmittanza U:	2,012 W/(m ² K)	Resistenza R:	0,497 (m ² K)/W
Massa superf.:	53 Kg/m ²	Colore:	Chiaro
Area:	- m ²		

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità term. C	Fattore μa	Fattore μυ
		[mm]	[W/(mK)]	[(m ² K)/W]	[Kg/m ³]	[kJ/(kgK)]	[-]	[-]
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-	-
Α	Abete (flusso perpendicolare alle fibre)	15,0	0,120	0,125	450	1,38	44,4	33,3
В	Lamiera di acciaio	5,0	80,000	0,000	7.870	0,46	999.99 9,0	999.99 9,0
С	Aria 20 mm (flusso verticale ascendente, aperture 500 - 1500 mm2)	20,0	0,260	0,077	1	1,00	1,0	1,0
D	Abete (flusso perpendicolare alle fibre)	15,0	0,120	0,125	450	1,38	44,4	33,3
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-	-
	TOTALE	55,0		0,497				

Conduttanza unitaria superficiale interna: 7,690 W/(m²K) Resistenza unitaria superficiale interna: 0,130 (m 2 K)/W Conduttanza unitaria superficiale esterna: 25,000 W/(m²K) Resistenza unitaria superficiale esterna: 0,040 (m 2 K)/W

VERIFICA DI TRASMITTANZA

Verifica di trasmittanza (non considerando l'influenza di eventuali ponti termici non corretti):

Comune:	Diano d`Alba	Zona climatica:	E
Trasmittanza della struttura U:	2,012 W/(m ² K)	Trasmittanza limite Ulim:	1,800 W/(m ² K)

Riferimento normativo: Limiti relativi alla Regione Piemonte Stralcio di Piano DPR 59

ESITO VERIFICA DI TRASMITTANZA: NO

VERIFICA TERMOIGROMETRICA

Il comportamento termoigrometrico dell'elemento opaco è valutato secondo le procedure di calcolo contenute nella UNI EN ISO 13788.

CONDIZIONI AL CONTORNO E DATI CLIMATICI

Comune:	Diano d'Alba	Tipo di calcolo:	Classi di concentrazione
Verso:	Esterno	Coeff. di correzione btr,x:	
Classe di edificio:	Alloggi con basso indice di affollamento	Volume interno V:	- m ³
Produz. nota di vapore G:	- kg/h		

	Temperatura interna Ti	Umidità relativa interna φi	Temperatura esterna Te	Umidità relativa esterna φe	Ricambio d'aria n
Mese	°C	%	°C	%	1/h
gennaio	20,0	65,0	-2,5	99,2	0,5
febbraio	20,0	65,0	0,6	92,4	0,5
marzo	20,0	65,0	5,8	84,7	0,5
aprile	20,0	65,0	10,9	83,1	0,5
maggio	20,0	65,0	14,9	81,6	0,5
giugno	20,0	65,0	19,5	80,4	0,5
luglio	20,0	65,0	22,1	74,5	0,5
agosto	20,0	65,0	20,8	77,9	0,5
settembre	20,0	65,0	16,8	85,9	0,5
ottobre	20,0	65,0	10,6	92,3	0,5
novembre	20,0	65,0	4,0	100,0	0,5
dicembre	20,0	65,0	-0,8	100,0	0,5

CONDIZIONE	Temperatura interna θi	Pressione parziale interna pi	Temperatura esterna θe	Pressione parziale esterna pe	
	°C	Pa	°C	Pa	
INVERNALE	20,00	1.519,00	-2,50	492,00	
ESTIVA	20,00	1.728,10	22,10	1.980,00	

	La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.
Х	La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,965 kg/m² (rievaporabile durante il periodo estivo).
	La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.

VERIFICA FORMAZIONE CONDENSA SUPERFICIALE

	Pressione esterna Pe	Numero di ric. d'aria n	Variazione di pressione ΔP	Pressione interna Pi	Pressione int. di satur. Psi	Temp. sup. interna T _S i	Fattore di res. sup. fRsi
Mese	Pa	1/h	Pa	Pa	Pa	°C	
ottobre	1179	-	380,7	1597,77	1997,21	17,49	0,7326
novembre	812,85	-	648	1525,65	1907,06	16,76	0,7973
dicembre	571,44	-	810	1462,44	1828,05	16,09	0,8121
gennaio	492	-	810	1383	1728,75	15,22	0,7876
febbraio	589	-	785,7	1453,27	1816,59	15,99	0,7935
marzo	781	-	575,1	1413,61	1767,01	15,56	0,6874
aprile	1083	-	368,55	1488,41	1860,51	16,37	0,6009

Verifica di condensa superficiale:

Fattore di resistenza superficiale nel mese critico fRsi: 0,8121 (mese di Dicembre)

Fattore di resistenza superficiale ammissibile fRsiAmm: 0,7384

ESITO VERIFICA DI CONDENSA SUPERFICIALE: NO

PRESSIONE DI VAPORE E PRESSIONE DI SATURAZIONE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0
	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0	2.337,0
Add-A	1.518,9	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0	1.519,0
	1.105,9	1.231,0	1.469,1	1.741,0	1.984,2	2.300,1	2.497,4	2.397,0	2.109,7	1.723,9	1.382,5	1.173,0
A-B	492,1	589,1	781,1	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,9	571,5
	1.105,6	1.230,8	1.469,0	1.740,9	1.984,1	2.300,1	2.497,5	2.397,0	2.109,7	1.723,7	1.382,3	1.172,8
B-C	492,1	589,1	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,9	571,5
	870,0	1.004,1	1.270,2	1.589,6	1.887,3	2.289,1	2.547,8	2.415,4	2.045,0	1.569,0	1.171,8	941,4
C-D	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	576,7	713,5	997,4	1.368,2	1.738,8	2.271,3	2.631,3	2.445,5	1.943,7	1.343,4	889,5	650,4
D-Add	492,0	589,0	781,0	1.083,0	1.382,0	1.821,0	1.980,0	1.913,0	1.643,0	1.179,0	812,8	571,4
	495,9	637,7	921,8	1.303,3	1.693,5	2.265,6	2.658,6	2.455,2	1.912,2	1.277,5	812,8	571,4

TEMPERATURE

T U D I 0

GIROLAMETTI S.F.I. AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	14,1	14,9	16,3	17,6	18,7	19,9	20,5	20,2	19,2	17,5	15,8	14,6
A-B	8,5	10,0	12,7	15,3	17,4	19,7	21,1	20,4	18,4	15,2	11,8	9,3
B-C	8,5	10,0	12,7	15,3	17,4	19,7	21,1	20,4	18,4	15,2	11,8	9,3
C-D	5,0	7,0	10,5	13,9	16,6	19,7	21,4	20,5	17,9	13,7	9,3	6,1
D-Add	-0,7	2,2	6,9	11,6	15,3	19,5	21,9	20,7	17,1	11,4	5,3	0,9
Add-Esterno	-2,5	0,6	5,8	10,9	14,9	19,5	22,1	20,8	16,8	10,6	4,0	-0,8

VERIFICA FORMAZIONE CONDENSA INTERSTIZIALE

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,3320	0,2090	0,0400	-0,1727	-0,3738	-0,6075	0,0000	0,0000	0,0000	0,0000	0,1061	0,2780
Ma [Kg/m²]	0,7161	0,9251	0,9652	0,7925	0,4187	0,0000	0,0000	0,0000	0,0000	0,0000	0,1061	0,3841
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

- Strato C. La quantità di condensa è superiore al valore massimo consentito: 0,7161 > 0,5000 kg/m² gennaio - Strato C. La quantità di condensa è superiore al valore massimo consentito: 0,9251 > 0,5000 kg/m² febbraio - Strato C. La quantità di condensa è superiore al valore massimo consentito: 0,9652 > 0,5000 kg/m² marzo - Strato C. La quantità di condensa è superiore al valore massimo consentito: 0,7925 > 0,5000 kg/m²

maggio - Strato C. Formazione di condensa: 0,4187 kg/m² novembre - Strato C. Formazione di condensa: 0,1061 kg/m² dicembre - Strato C. Formazione di condensa: 0,3841 kg/m² Mese condensazione massima: marzo

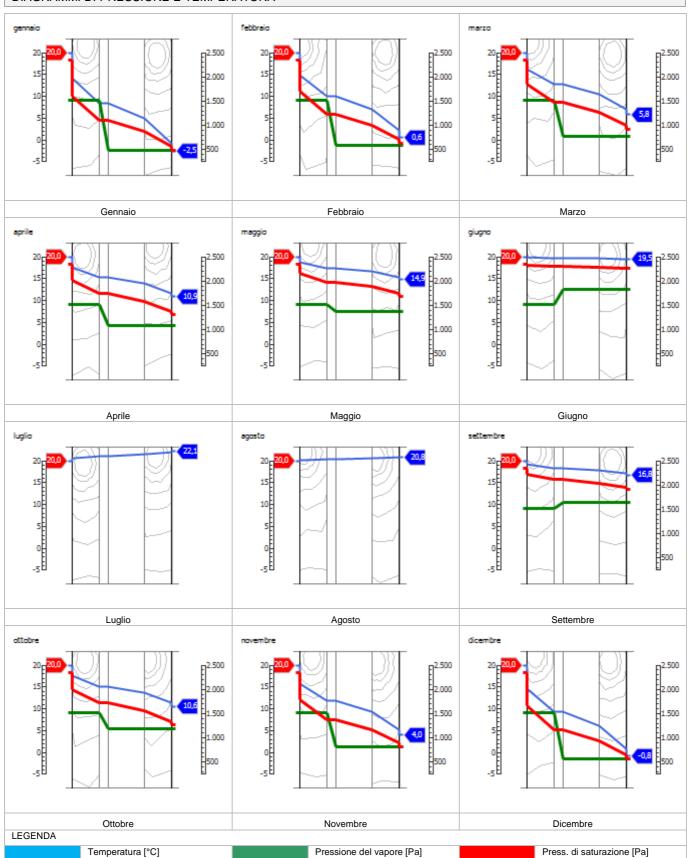
Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,3320 (mese di gennaio) kg/m² nell'interfaccia A-B Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,9652 (mese di marzo) kg/m 2 nell'interfaccia A-B

ESITO VERIFICA DI CONDENSA INTERSTIZIALE: Interfaccia A-B

- Condensa eccessiva: $0,7161 > 0,5000 \text{ kg/m}^2$



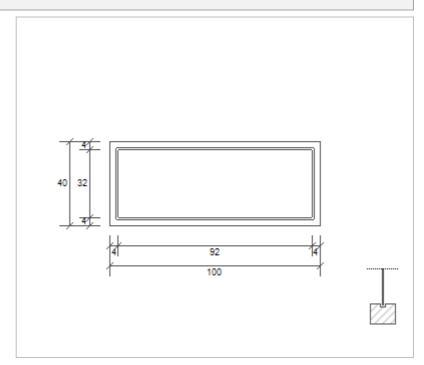
e-mail: info@studiogirolametti.it P.IVA/C.F. 03493900041

DIAGRAMMI DI PRESSIONE E TEMPERATURA

S T U D I O GIROLAMETTI S.r.I.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

11.8 STRUTTURE TRASPARENTI

SERRAMENTO: Serramento 100x40 esistente


GEOMETRIA DEL SERRAMENTO

Nome: Serramento 100x40 esistente

Larghezza: 100 cm Altezza: 40 cm

Disperde verso: Esterno

Spessore superiore del telaio: 4 cm
Spessore inferiore del telaio: 4 cm
Spessore sinistro del telaio: 4 cm
Spessore destro del telaio: 4 cm
Numero divisioni verticali: 0
Spessore divisioni verticali: 0 cm
Numero divisioni orizzontali: 0 cm

Area del vetro Ag: 0,294 m²

Area totale del serramento Aw: 0,400 m²

Area del telaio Af: 0,106 m²

Perimetro della superficie vetrata Lg: 2,480 m

PARAMETRI DEL VETRO E DEL TELAIO

Vetro

Nome del vetro: Vetro singolo 4 mm Tipologia vetro: Vetro singolo

Coefficiente di trasmissione solare g: 0,850 Emissività ε: 0,837

Trasmittanza termica vetro Ug: 5,746 W/(m2 K)

Telaio

Materiale: Metallo Tipologia telaio: Senza taglio termico

Spessore sf: 0 mm Distanziatore: -

Trasmittanza termica del telaio Uf: 5,900 W/(m² K)

Trasmittanza lineica ponte termico tra vetro e telaio ψfg: 0,000 W/(m K)

SCHERMATURE MOBILI

Tipo schermatura: - Posizione: Colore: - Trasparenza: g,gl,sh,d: - g,gl,sh,b: -

g,gl,sh/g,gl: -

PARAMETRI TERMICI DELLA CHIUSURA

Permeabilità della chiusura: -Tipo chiusura: -

Resistenza termica aggiuntiva dovuta alla chiusura ΔR: 0,000 (m² K)/W

Frazione oraria di utilizzo della chiusura fshut: 0,60

PARAMETRI RIASSUNTIVI DEL SERRAMENTO

Trasmittanza termica del serramento Uw: 6,000 W/(m2 K)

Trasmittanza termica serramento comprendendo la tapparella Uw, CORR: 6,000 W/(m2 K)

STRUTTURE ASSOCIATE AL SERRAMENTO

Strutture opache e ponti termici	<i>Area o lunghezza</i> [m ²] o [m]	<i>Trasmittanza</i> [W/(m ² K)] o [W/(mK)]
Assenti	-	-

SERRAMENTO: Serramento 100x40 esistente

VERIFICHE DEL SERRAMENTO

Verifica di trasmittanza

Comune di riferimento: Diano d'Alba

Anno di riferimento: 2015

Trasmittanza serramento Uw: 6,000 W/(m 2 K)

Zona climatica di riferimento: E

Trasmittanza limite Uw: 1,800 W/(m² K)

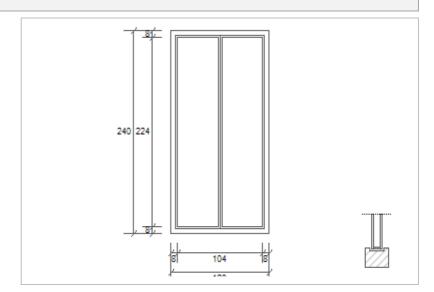
VERIFICA: NO

Riferimento normativo:

SERRAMENTO: Serramento 120x240 esistente

GEOMETRIA DEL SERRAMENTO

Nome: Serramento 120x240 esistente


Larghezza: 120 cm Altezza: 240 cm

Disperde verso: Esterno

Spessore superiore del telaio: 8 cm Spessore inferiore del telaio: 8 cm Spessore sinistro del telaio: 8 cm Spessore destro del telaio: 8 cm Numero divisioni verticali: 1 Spessore divisioni verticali: 5 cm Numero divisioni orizzontali: 0 Spessore divisioni orizzontali: 0 cm

Area del vetro Ag: 2,218 m²

Area totale del serramento Aw: 2,880 m²

Area del telaio Af: 0,662 m²

Perimetro della superficie vetrata Lg: 10,940 m

PARAMETRI DEL VETRO E DEL TELAIO

Vetro

Nome del vetro: Vetro 4-10-4

Coefficiente di trasmissione solare g: 0,750

Trasmittanza termica vetro Ug: 1,728 W/(m2 K)

Tipologia vetro: Doppio vetro normale

Emissività ε: 0,837

Telaio

Materiale: Legno

Trasmittanza termica del telaio Uf: 2,134 W/(m² K)

Tipologia telaio: Legno tenero Spessore sf: 40 mm Distanziatore: Plastica

Trasmittanza lineica ponte termico tra vetro e telaio ψfg: 0,050 W/(m K)

SCHERMATURE MOBILI

Tipo schermatura: -

Posizione: -Colore: -Trasparenza: g,gl,sh,d: g,gl,sh,b: -

g,gl,sh/g,gl: -

PARAMETRI TERMICI DELLA CHIUSURA

Tipo chiusura: Legno e plastica senza schiuma

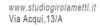
Permeabilità della chiusura: Media permeabilità all'aria

Resistenza termica aggiuntiva dovuta alla chiusura ΔR: 0,160 (m² K)/W

Frazione oraria di utilizzo della chiusura fshut: 0,60

PARAMETRI RIASSUNTIVI DEL SERRAMENTO

Trasmittanza termica del serramento Uw: 3,000 W/(m2 K)



Cel +39 348 51 39 182 12051 Alba (CN) T/F +39 0173 36 50 27 e-mail: info@studiogirolametti.it P.IVA/C.F. 03493900041

STRUTTURE ASSOCIATE AL SERRAMENTO

Strutture opache e ponti termici	<i>Area o lunghezza</i> [m ²] o [m]	<i>Trasmittanza</i> [W/(m ² K)] o [W/(mK)]
Cassonetto esistente	0,5	1,235

SERRAMENTO: Serramento 120x240 esistente

VERIFICHE DEL SERRAMENTO

Verifica di trasmittanza

Comune di riferimento: Diano d'Alba

Anno di riferimento: 2015

Trasmittanza serramento Uw: 3,000 W/(m² K)

Zona climatica di riferimento: E

Trasmittanza limite Uw: 1,800 W/(m² K)

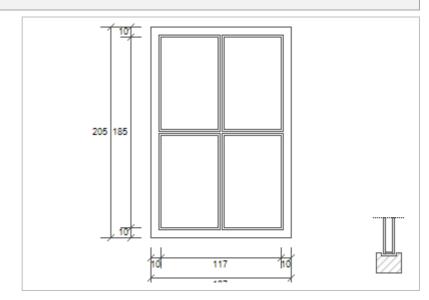
VERIFICA: NO

Riferimento normativo:

SERRAMENTO: Serramento 137x205 esistente

GEOMETRIA DEL SERRAMENTO

Nome: Serramento 137x205 esistente


Larghezza: 137 cm Altezza: 205 cm

Disperde verso: Esterno

Spessore superiore del telaio: 10 cm
Spessore inferiore del telaio: 10 cm
Spessore sinistro del telaio: 10 cm
Spessore destro del telaio: 10 cm
Numero divisioni verticali: 1
Spessore divisioni verticali: 5 cm
Numero divisioni orizzontali: 5 cm

Area del vetro Ag: 2,016 m²

Area totale del serramento Aw: 2,808 m²

Area del telaio Af: 0,792 m²

Perimetro della superficie vetrata Lg: 11,680 m

PARAMETRI DEL VETRO E DEL TELAIO

Vetro

Nome del vetro: Vetro 4-10-4

Coefficiente di trasmissione solare g: 0,750

Trasmittanza termica vetro Ug: 1,728 W/(m2 K)

Tipologia vetro: Doppio vetro normale

Tipologia telaio: Legno tenero

Distanziatore: Plastica

Emissività ε: 0,837

Telaio

Materiale: Legno Spessore sf: 40 mm

Trasmittanza termica del telaio Uf: 2,134 W/(m² K)

Trasmittanza lineica ponte termico tra vetro e telaio ψfg: 0,050 W/(m K)

SCHERMATURE MOBILI

Tipo schermatura: - Posizione: Colore: - Trasparenza: g,gl,sh,d: - g,gl,sh,b: -

g,gl,sh/g,gl: -

PARAMETRI TERMICI DELLA CHIUSURA

Tipo chiusura: Legno e plastica senza schiuma Permeabilità della chiusura: Media permeabilità all'aria

Resistenza termica aggiuntiva dovuta alla chiusura ΔR: 0,160 (m² K)/W

Frazione oraria di utilizzo della chiusura fshut: 0,60

PARAMETRI RIASSUNTIVI DEL SERRAMENTO

Trasmittanza termica del serramento Uw: 3,000 W/(m2 K)

STRUTTURE ASSOCIATE AL SERRAMENTO

Strutture opache e ponti termici	Area o lunghezza [m²] o [m]	<i>Trasmittanza</i> [W/(m ² K)] o [W/(mK)]
Cassonetto esistente	0,5	1,235
M04_Sottofinestra esistente	1,2	1,953

SERRAMENTO: Serramento 137x205 esistente

VERIFICHE DEL SERRAMENTO

Verifica di trasmittanza

Comune di riferimento: Diano d'Alba

Anno di riferimento: 2015

Trasmittanza serramento Uw: 3,000 W/(m² K)

Zona climatica di riferimento: E

Trasmittanza limite Uw: 1,800 W/(m² K)

VERIFICA: NO

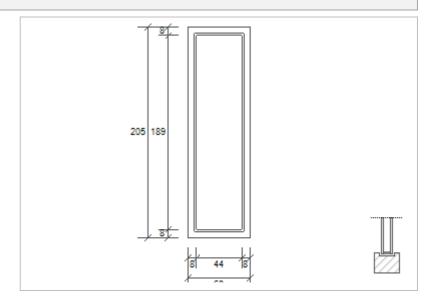
Riferimento normativo:

.it

SERRAMENTO: Serramento 60x205 esistente

GEOMETRIA DEL SERRAMENTO

Nome: Serramento 60x205 esistente


Larghezza: 60 cm Altezza: 205 cm

Disperde verso: Esterno

Spessore superiore del telaio: 8 cm
Spessore inferiore del telaio: 8 cm
Spessore sinistro del telaio: 8 cm
Spessore destro del telaio: 8 cm
Numero divisioni verticali: 0
Spessore divisioni verticali: 0 cm
Numero divisioni orizzontali: 0 cm

Area del vetro Ag: 0,832 m²

Area totale del serramento Aw: 1,230 m²

Area del telaio Af: 0,398 m²

Perimetro della superficie vetrata Lg: 4,660 m

PARAMETRI DEL VETRO E DEL TELAIO

Vetro

Nome del vetro: Vetro 4-10-4

Coefficiente di trasmissione solare g: 0,750

Trasmittanza termica vetro Ug: 1,728 W/(m2 K)

Tipologia vetro: Doppio vetro normale

Emissività ϵ : 0,837

Telaio

Materiale: Legno Tipologia telaio: Legno tenero Spessore sf: 40 mm Distanziatore: Plastica

Trasmittanza termica del telaio Uf: 2,134 W/(m² K)

Trasmittanza lineica ponte termico tra vetro e telaio ψfg: 0,050 W/(m K)

SCHERMATURE MOBILI

Tipo schermatura: - Posizione: Colore: - Trasparenza: g,gl,sh,d: - g,gl,sh,b: -

g,gl,sh/g,gl: -

PARAMETRI TERMICI DELLA CHIUSURA

Tipo chiusura: Legno e plastica senza schiuma Permeabilità della chiusura: Media permeabilità all'aria

Resistenza termica aggiuntiva dovuta alla chiusura ΔR: 0,160 (m² K)/W

Frazione oraria di utilizzo della chiusura fshut: 0,60

PARAMETRI RIASSUNTIVI DEL SERRAMENTO

Trasmittanza termica del serramento Uw: 3,000 W/(m2 K)

Strutture opache e ponti termici	Area o lunghezza [m²] o [m]	<i>Trasmittanza</i> [W/(m ² K)] o [W/(mK)]
Cassonetto esistente	0,2	1,235
M04_Sottofinestra esistente	0,5	1,953

SERRAMENTO: Serramento 60x205 esistente

VERIFICHE DEL SERRAMENTO

Verifica di trasmittanza

Comune di riferimento: Diano d'Alba

Anno di riferimento: 2015

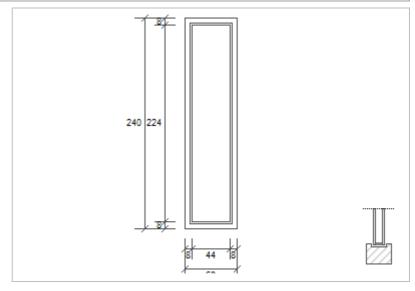
Trasmittanza serramento Uw: 3,000 W/(m² K)

Zona climatica di riferimento: E

Trasmittanza limite Uw: 1,800 W/(m² K)

VERIFICA: NO

Riferimento normativo:



SERRAMENTO: Serramento 60x240 esistente

GEOMETRIA DEL SERRAMENTO

Nome: Serramento 60x240 esistente Larghezza: Altezza: 240 cm Disperde verso: Esterno Spessore superiore del telaio: 8 cm Spessore inferiore del telaio: 8 cm Spessore sinistro del telaio: 8 cm Spessore destro del telaio: 8 cm Numero divisioni verticali: 0 Spessore divisioni verticali: 0 cm Numero divisioni orizzontali: Spessore divisioni orizzontali: 0 cm

Area del vetro Ag: 0,986 m²

Area totale del serramento Aw: 1,440 m²

Area del telaio Af: 0,454 m²

Perimetro della superficie vetrata Lg: 5,360 m

PARAMETRI DEL VETRO E DEL TELAIO

Vetro

Nome del vetro: Vetro 4-10-4 Tipologia vetro: Doppio vetro normale

Coefficiente di trasmissione solare g: 0,750 Emissività ε: 0,837

Trasmittanza termica vetro Ug: 1,728 W/(m2 K)

Telaio

Materiale: Legno Tipologia telaio: Legno tenero Spessore sf: 40 mm Distanziatore: Plastica

Trasmittanza termica del telaio Uf: 2,134 W/(m² K)

Trasmittanza lineica ponte termico tra vetro e telaio ψfg: 0,050 W/(m K)

SCHERMATURE MOBILI

Tipo schermatura: - Posizione: Colore: - Trasparenza: g,gl,sh,d: - g,gl,sh,b: -

g,gl,sh/g,gl: -

PARAMETRI TERMICI DELLA CHIUSURA

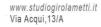
Tipo chiusura: Legno e plastica senza schiuma Permeabilità della chiusura: Media permeabilità all'aria

Resistenza termica aggiuntiva dovuta alla chiusura ΔR: 0,160 (m² K)/W

Frazione oraria di utilizzo della chiusura fshut: 0,60

PARAMETRI RIASSUNTIVI DEL SERRAMENTO

Trasmittanza termica del serramento Uw: 3,000 W/(m2 K)



Cel +39 348 51 39 182 12051 Alba (CN) T/F +39 0173 36 50 27 e-mail: info@studiogirolametti.it P.IVA/C.F. 03493900041

STRUTTURE ASSOCIATE AL SERRAMENTO

Strutture opache e ponti termici	<i>Area o lunghezza</i> [m ²] o [m]	<i>Trasmittanza</i> [W/(m ² K)] o [W/(mK)]
Cassonetto esistente	0,2	1,235

SERRAMENTO: Serramento 60x240 esistente

VERIFICHE DEL SERRAMENTO

Verifica di trasmittanza

Comune di riferimento: Diano d'Alba

Anno di riferimento: 2015

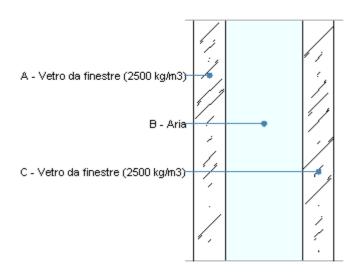
Trasmittanza serramento Uw: 3,000 W/(m² K)

Zona climatica di riferimento: E

Trasmittanza limite Uw: 1,800 W/(m² K)

VERIFICA: NO

Riferimento normativo:



Vetro 4-10-4

GIROLAMETTI S.r.I.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

Le proprietà termiche dei vetri sono valutate in base alla UNI EN 673.

DATI DEL VETRO

Nome: Vetro 4-10-4

Numero lastre:	Spessore vetro: 18,0 mm
Trasmittanza U: 1,728 W/(m ² K)	Resistenza R: 0,579 (m ² K)/W

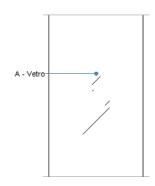
STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Emissività normale interna εni	Emissività normale esterna εne	Densità ρ	Viscosità dinamica μ	Capacità termica specifica c
		[mm]	[W/(mK)]	[-]	[-]	[Kg/m ³]	[10 ⁻⁵ Kg/(ms)]	[J/(kgK)]
	Adduttanza interna (flusso orizzontale)	-	7,690	-	-	-	-	-
Α	Vetro da finestre (2500 kg/m3)	4,0	1,000	0,89	0,89	2.500	0,0	0,84
В	Aria	10,0	0,025	0,89	0,89	1	1,8	1,01
С	Vetro da finestre (2500 kg/m3)	4,0	1,000	0,89	0,89	2.500	0,0	0,84
	Adduttanza esterna (flusso orizzontale)	-	25,000	-	-	-	-	-
	TOTALE	18,0						

RESISTENZE

Costanti dipendenti dall'orientamento del vetro: A = , N =

	Strato	Emissività corretta interna εi	Emissività corretta esterna εe	Salto termico intercapedine ΔT	Conduttanza radiativa hr	Conduttanza lastra hg	Conduttanza intercapedine hs	Resistenza termica R
		[-]	[-]	[°C]	$[W/(m^2K)]$	[W/(m ² K)]	$[W/(m^2K)]$	[(m ² K)/W]
	Adduttanza interna (flusso orizzontale)	-	-	-	-	-	-	0,130
Α	Vetro da finestre (2500 kg/m3)							
В	Aria							
С	Vetro da finestre (2500 kg/m3)							
	Adduttanza esterna (flusso orizzontale)	-	-	-	-	-	-	0,040
	TOTALE							



Vetro singolo 4 mm

GIROLAMETTI S.r.L.
AMBIENTE · ACUSTICA · ENERGETICA · STRUTTURALE

Le proprietà termiche dei vetri sono valutate in base alla UNI EN 673.

DATI DEL VETRO

Nome: Vetro singolo 4 mm

Numero lastre:	Spessore vetro: 4,0 mm
Trasmittanza U: 5,746 W/(m ² K)	Resistenza R: 0,174 (m ² K)/W

STRATIGRAFIA

	Strato	Spessore s	Conduttività λ	Emissività normale interna εni	Emissività normale esterna εne	Densità ρ	Viscosità dinamica μ	Capacità termica specifica c
		[mm]	[W/(mK)]	[-]	[-]	[Kg/m ³]	[10 ⁻⁵ Kg/(ms)]	[J/(kgK)]
	Adduttanza interna (flusso orizzontale)	-	7,690	-	-	-	-	-
Α	Vetro	4,0	1,000	0,89	0,89	2.500	0,0	0,84
	Adduttanza esterna (flusso orizzontale)	-	25,000	-	-	-	-	-
	TOTALE	4,0						

RESISTENZE

Costanti dipendenti dall'orientamento del vetro: $A=0,035,\,N=0,38$

	Strato	Emissività corretta interna εi	Emissività corretta esterna εe	Salto termico intercapedine ΔT	Conduttanza radiativa hr	Conduttanza lastra hg	Conduttanza intercapedine hs	Resistenza termica R
		[-]	[-]	[°C]	$[W/(m^2K)]$	[W/(m ² K)]	[W/(m ² K)]	[(m ² K)/W]
	Adduttanza interna (flusso orizzontale)	-	-	-	-	-	-	0,130
Α	Vetro	-	-	-	-	-	-	0,004
	Adduttanza esterna (flusso orizzontale)	-	-	-	-	-	-	0,040
	TOTALE							0,17

12. TARGA ENERGETICA

